首页 | 本学科首页   官方微博 | 高级检索  
     


A G protein-coupled receptor kinase induces Xenopus oocyte maturation
Authors:Wang Jing  Liu X Johné
Affiliation:Ottawa Health Research Institute, Ottawa Hospital Civic Campus, 725 Parkdale Avenue, Ottawa, Ontario K1Y 4E9, Canada.
Abstract:Several recent studies have suggested that resumption of oocyte meiosis, indicated by germinal vesicle breakdown or GVBD, involves inhibition of endogenous heterotrimeric G proteins in both frogs and mice. These studies imply that a heterotrimeric G protein(s), and hence its upstream activator (a G protein-coupled receptor or GpCR), is activated in prophase oocytes and is responsible for maintaining meiosis arrest. To test the existence and function of this putative GpCR, we utilized a mammalian G-protein-coupled receptor kinase (GRK3) and beta-arrestin-2, which together are known to cause GpCR desensitization. Injection of mRNA for rat GRK3 caused hormone-independent GVBD. The kinase activity of GRK3 was essential for GVBD induction as its kinase-dead mutant (GRK3-K220R) was completely ineffective. Another GRK3 mutant (GRK3-DeltaC), which lacked the C-terminal G(betagamma)-binding domain and which was not associated with oocyte membranes, also failed to induce GVBD. Furthermore, injection of rat beta-arrestin-2 mRNA also induced hormone-independent GVBD. Several inhibitors of clathrin-mediated receptor endocytosis (the clathrin-binding domain of beta-arrestin-2, concanavalin A, and monodansyl cadaverine) significantly reduced the abilities of GRK3/beta-arrestin-2 to induce GVBD. These results support the central role of a yet-unidentified GpCR in maintaining prophase arrest in frog oocytes and provide a potential means for its molecular identification.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号