首页 | 本学科首页   官方微博 | 高级检索  
     


Application of independent component analysis to microarrays
Authors:Su-In?Lee,Serafim?Batzoglou  author-information"  >  author-information__contact u-icon-before"  >  mailto:serafim@cs.stanford.edu"   title="  serafim@cs.stanford.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Department of Electrical Engineering, Stanford University, 94305-9010 Stanford, CA, USA;(2) Department of Computer Science, Stanford University, 94305-9010 Stanford, CA, USA;
Abstract:We apply linear and nonlinear independent component analysis (ICA) to project microarray data into statistically independent components that correspond to putative biological processes, and to cluster genes according to over- or under-expression in each component. We test the statistical significance of enrichment of gene annotations within clusters. ICA outperforms other leading methods, such as principal component analysis, k-means clustering and the Plaid model, in constructing functionally coherent clusters on microarray datasets from Saccharomyces cerevisiae, Caenorhabditis elegans and human.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号