Biodegradation of trichloroethylene and toluene by indigenous microbial populations in vadose sediments |
| |
Authors: | M. E. Fuller D. Y. Mu K. M. Scow |
| |
Affiliation: | (1) Department of Land, Air and Water Resources, University of California, 95616 Davis, Davis, California, USA |
| |
Abstract: | The unsaturated subsurface (vadose zone) receives significant amounts of hazardous chemicals, yet little is known about its microbial communities and their capacity to biodegrade pollutants. Trichloroethylene (TCE) biodegradation occurs readily in surface soils; however, the process usually requires enzyme induction by aromatic compounds, methane, or other cosubstrates. The aerobic biodegradation of toluene and TCE by indigenous microbial populations was measured in samples collected from the vadose zone at unpolluted and gasoline-contaminated sites. Incubation at field moisture levels showed little activity on either TCE or toluene, so samples were tested in soil suspensions. No degradation occurred in samples suspended in water or phosphate buffer solution; however, both toluene and TCE were degraded in samples suspended in mineral salts medium. TCE degradation depended on toluene degradation, and little loss occurred under sterile conditions. Studies with specific nutrients showed that addition of ammonium sulfate was essential for degradation, and addition of other mineral nutrients further enhanced the rate. Additional studies with vadose sediments amended with nutrients showed similar trends to those observed in sediment suspensions. Initial rates of biodegradation in suspensions were faster in uncontaminated samples than in gasolinecontaminated samples, but the same percentages of chemicals were degraded. Biodegradation was slower and less extensive in shallower samples than deeper samples from the uncontaminated site. Two toluene-degrading organisms isolated from a gasoline-contaminated sample were identified as Corynebacterium variabilis SVB74 and Acinetobacter radioresistens SVB65. Inoculation with 106 cells of C. variabilis ml–1 of soil solution did not enhance the rate of degradation above that of the indigenous population. These results indicate that mineral nutrients limited the rate of TCE and toluene degradation by indigenous populations and that no additional benefit was derived from inoculation with a toluene-degrading bacterial strain.Correspondence to: K.M. Scow |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|