首页 | 本学科首页   官方微博 | 高级检索  
     


Glutamine synthetase,glutamate synthase and glutamate dehydrogenase in Rhizobium japonicum strains grown in cultures and in bacteroids from root nodules of Glycine max
Authors:Franklin Vairinhos  Basant Bhandari  D. J. D. Nicholas
Affiliation:1. Department of Agricultural Biochemistry, Waite Agricultural Research Institute, University of Adelaide, 5064, Glen Osmond, S.A., Australia
Abstract:The growth yields of three strains of Rhizobium japonicum (CB 1809, CC 723, CC 705) in culture solutions containing L-glutamate were about twice those grown with ammonium. The activities of glutamine synthetase (GS; EC 6.3.1.2) and glutamate dehydrogenase (GDH; EC 1.4.1.4) were dependent on the nitrogen source in the medium and also varied with growth. Both NADPH-and NADH-dependent glutamate synthase (GOGAT; EC 1.4.1.13) and NADPH-dependent GDH were found in strains grown with either glutamate or ammonium but NADH-linked GDH was only detected in glutamate-grown cells. Glutamine synthetase was adenylylated in cells grown with NH 4 + (90%) and to lesser extent in those grown with L-glutamate (50%). In root nodules produced by the three strains in Glycine max (L.) Merr., the bulk of GS was located in the nodule cytosol (60–85%). The enzyme was adenylylated in bacteroids (43–75%) and in the nodule tissues (52–68%). The enzyme in cell-free extracts of Rh. japonicum (CC 705) grown in culture solutions containing glutamate and in bacteroids (CC 705) was deadenylylated by snake-venom phosphodiesterase. L-methionine-DL-sulfoximine restricted the incoporation of 15N-labelled (NH4)2SO4 into cells of strains CB 1809 and CC 705, as well as in bacteroids of strain CC 705. It is noteworthy that appreciable activities for GDH were found in the free-living rhizobia grown on glutamate. Thus the presence of an enzyme does not necessarily imply that a particular pathway is operative in assimilating ammonium into cell nitrogen. Based on 15N studies, the GS-GOGAT pathway of rhizobia (strains CB 1809 and CC 705) is important when grown in culture solutions as well as in bacteroids from root nodules of G. max.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号