首页 | 本学科首页   官方微博 | 高级检索  
     


Development and Validation of a Continuous In Vitro System Reproducing Some Biotic and Abiotic Factors of the Veal Calf Intestine
Authors:Marie Gérard-Champod  Stéphanie Blanquet-Diot  Jean-Michel Cardot  David Bravo  Monique Alric
Affiliation:Clermont Université, Université d''Auvergne, Centre de Recherche en Nutrition Humaine Auvergne, ERT 18, Conception Ingénierie et Développement de l''Aliment et du Médicament, BP 10448, F-63000 Clermont-Ferrand, France,1. Pancosma SA, Voie-des-Traz 6, C.P. 143, CH-1218 Le Grand-Saconnex, Switzerland2.
Abstract:Following the January 2006 European ban of antibiotics used as growth promoters in the veal calf industry, new feed additives are needed in order to maintain animal health and growth performance. As an alternative to in vivo experiments in the testing of such additives, an in vitro system modeling the intestinal ecosystem of the veal calf was developed. Stabilization of the main cultured microbial groups and their metabolic activity were tracked in an in vitro continuous fermentor operated under anaerobiosis, at pH 6.5, and at a temperature of 38.5°C and supplied with one of three different nutritive media (M1, M2, or M3). These media mainly differed in their concentrations of simple and complex carbohydrates and in their lipid sources. In vitro microbial levels and fermentative metabolite concentrations were compared to in vivo data, and the biochemical composition of the nutritive media was compared to that of the veal calf intestinal content. All three nutritive media were able to stabilize anaerobic and facultative anaerobic microflora, lactate-utilizing bacteria, bifidobacteria, lactobacilli, enterococci, and Bacteroides fragilis group bacteria at levels close to in vivo values. The microbiota was metabolically active, with high concentrations of lactate, ammonia, and short-chain fatty acids found in the fermentative medium. Comparison with in vivo data indicated that M3 outperformed M1 and M2 in simulating the conditions encountered in the veal calf intestine. This in vitro system would be useful in the prescreening of new feed additives by studying their effect on the intestinal microbiota levels and fermentative metabolite production.European regulations introduced in January 2006 banned the use of antibiotics as growth promoters (AGP) at subtherapeutic levels in animal feed (regulation EC 1831/2003), particularly for veal calves. AGP generated significantly enhanced growth performance via complex processes. The mechanism of growth promotion is still speculative, but many studies suggest the involvement of the intestinal microbiota (7, 9). First of all, AGP did not promote the growth of germfree animals (6). Moreover, they strongly inhibited the bacterial catabolism of urea and amino acids and the fermentation of carbohydrates both in vitro and in vivo (10, 28, 35). AGP treatment thus provided the animal with higher nutrient availability and led to a decrease in the toxic metabolites produced by bacteria, like ammonia or amines, limiting the energy needed by the animal to detoxify the organism. Some authors also argue that another beneficial effect of AGP results from improved control of intestinal pathologies, such as necrotic enteritis in poultry (12). The January 2006 ban is thus expected to have an impact on veal calf health by leading to more frequent digestive disorders, as previously observed in pigs and poultry in the Nordic countries (36), where AGP have been totally prohibited since the 1990s. Even though no scientific study has yet been done on calves, there have already been reports of higher death rates on experimental commercial farms subsequent to the withdrawal of AGP. The main digestive diseases leading to veal calf deaths are enteritis and enterotoxemia, which are mainly triggered by pathogenic strains of Escherichia coli and Clostridium perfringens (22, 30).Veal calf producers are looking for new feed additives to allay the consequences of the AGP ban. Alternative approaches include the use of prebiotics, probiotics, or plant extracts. Several studies have reported both consistent improvements in weight gain and feed conversion and a reduction of the incidence of diarrhea with the addition of such additives to the veal calf diet (1, 11, 14). One of the hypotheses used to explain these beneficial effects involves the modulation of the intestinal microbiota. In particular, oligosaccharides containing mannose or fructose are known to selectively increase the growth of beneficial intestinal bacteria, including lactobacilli and bifidobacteria (21). Timmerman et al. (33) showed that a calf-specific probiotic containing six Lactobacillus species reduced the fecal counts of E. coli. Green tea extracts also improved the intestinal microbial balance by maintaining high fecal levels of Bifidobacterium and Lactobacillus spp. and decreasing those of C. perfringens (16).As indicated above, it is important to assess the action of newly developed feed additives on the veal calf intestinal microbiota. High interindividual variability makes it difficult and expensive to carry out in vivo studies. Alternatively, experiments can be conducted via in vitro systems modeling the intestinal environment of the animals, provided the model has been checked as pertinent. This approach should allow an economical and ethical way to prescreen feed additives by studying their effects on the intestinal microbiota cultured in the in vitro system and its metabolic activity. With this objective in mind, a necessary requirement is knowledge of the veal calf intestinal ecosystem. Thus, the bacterial and biochemical composition of the jejunoileal chyme of calves was previously characterized (13).The aims of the present study were (i) to set up an in vitro system where the main cultured microbial groups identified in the veal calf intestinal chyme are reproducibly stabilized and metabolically active and (ii) to validate our model by comparing the in vitro and in vivo levels of selected biotic and abiotic variables.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号