首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of Wild-Derived Inbred Mouse Strains Highly Susceptible to Monkeypox Virus Infection for Use as Small Animal Models
Authors:Jeffrey L Americo  Bernard Moss  Patricia L Earl
Institution:Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
Abstract:Infection with monkeypox virus (MPXV) causes disease manifestations in humans that are similar, although usually less severe, than those of smallpox. Since routine vaccination for smallpox ceased more than 30 years ago, there is concern that MPXV could be used for bioterrorism. Thus, there is a need to develop animal models to study MPXV infection. Accordingly, we screened 38 inbred mouse strains for susceptibility to MPXV. Three highly susceptible wild-derived inbred strains were identified, of which CAST/EiJ was further developed as a model. Using an intranasal route of infection with an isolate of the Congo Basin clade of MPXV, CAST/EiJ mice exhibited weight loss, morbidity, and death in a dose-dependent manner with a calculated 50% lethal dose (LD50) of 680 PFU, whereas there were no deaths of BALB/c mice at a 10,000-fold higher dose. CAST/EiJ mice exhibited greater MPXV sensitivity when infected via the intraperitoneal route, with an LD50 of 14 PFU. Both routes resulted in MPXV replication in the lung, spleen, and liver. Intranasal infection with an isolate of the less-pathogenic West African clade yielded an LD50 of 7,600 PFU. The immune competence of CAST/EiJ mice was established by immunization with vaccinia virus, which induced antigen-specific T- and B-lymphocyte responses and fully protected mice from lethal doses of MPXV. The new mouse model has the following advantages for studying pathogenesis of MPXV, as well as for evaluation of potential vaccines and therapeutics: relative sensitivity to MPXV through multiple routes, genetic homogeneity, available immunological reagents, and commercial production.Monkeypox virus (MPXV), a member of the orthopoxvirus genus of the Chordopoxvirinae subfamily of the Poxviridae, was isolated in 1958 from lesions in a cynomolgous monkey that had been imported from Africa (27). The first human infections with MPXV were reported in 1972, and since then more than two thousand cases have been recorded, most in the Democratic Republic of the Congo and lesser numbers in West African countries (reviewed by Parker et al. 18]). The mortality from human monkeypox in the Congo is estimated to be 10% of infected individuals with clinical symptoms that mimic smallpox, which is caused by another member of the orthopoxvirus genus: variola virus. However, whereas the host range of variola virus is restricted to humans, serological studies indicate that MPXV naturally infects a large number of animal species, particularly squirrels and nonhuman primates. The sporadic occurrence of human monkeypox is thought to arise from close proximity and handling of infected animals. In this respect, a self-limited outbreak in the United States was traced to a shipment of West African rodents (19). Although monkeypox is a minor public health problem when compared historically to smallpox, the potential for expansion of the MPXV host range and adaptations to enhance human transmission make it prudent to continue careful surveillance. Moreover, the potential use of MPXV for bioterrorism has led to its inclusion as a select agent in the United States (http://www.selectagents.gov).Animal models are crucial for studying virus pathogenesis, and MXPV is no exception. Ground squirrels (22, 26), black-tailed prairie dogs (9, 11, 13, 30), and African dormice (23) are highly susceptible to MPXV. However, as experimental systems, each has limitations with regard to unavailability of commercial breeding, genetic heterogeneity and absence of immunological and other reagents. Laboratory mice, including BALB/c, C57BL/6, and several other mouse strains tested, were found to be resistant to MPXV disease unless impaired in innate or acquired immunity (10, 17, 24). In the present study, we tested a large group of distinct inbred strains of mice chosen for genetic diversity, inclusion of classical and wild-derived strains, and commercial availability. Of 38 inbred mouse strains tested, three wild-derived strains were highly susceptible to MPXV. One of these, CAST/EiJ, was further characterized with regard to MPXV strain sensitivity, route of inoculation, virus dissemination, immune response, and protection by vaccination and drug treatment.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号