首页 | 本学科首页   官方微博 | 高级检索  
     


A 24-microwell plate with improved mixing and scalable performance for high throughput cell cultures
Authors:Yuan Wen  Ru Zang  Xudong Zhang  Shang-Tian Yang
Affiliation:William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH 43210, United States
Abstract:Multi-well plates are widely used in high throughput drug screening, cell clone development, media design and cell culture optimization in the biotechnology industry. The reproducibility and data quality of cell cultures in multi-well plates are greatly affected by mixing, aeration, and evaporation. A novel 24-microwell plate (MWP) with static mixers for improved mixing and aeration, and gas permeable lids for reduced evaporation was developed for cell cultures. Mixing, oxygen transfer, evaporation, and cell proliferation as affected by the static mixer, shape of the well and agitation rate were studied. The static mixer improved mixing pattern and reduced cell aggregation under orbital shaking conditions. Consequently, the static mixer also improved cell proliferation with a significantly higher specific growth rate in round wells. In general, consistent growth kinetics was observed for cells cultured on the plate. Overall, the MWP improved the data quality with smaller standard deviations and better reproducibility. Furthermore, CHO cells cultured in the MWP gave similar kinetics in glucose consumption, lactate production, cell growth and viability, and antibody production in a serum-free medium to those cultured in spinner flasks, demonstrating its scalable performance and potential application in high throughput screening for cell culture process development.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号