首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Human Proteins MBD5 and MBD6 Associate with Heterochromatin but They Do Not Bind Methylated DNA
Authors:Sophie Laget  Michael Joulie  Florent Le Masson  Nobuhiro Sasai  Elisabeth Christians  Sriharsa Pradhan  Richard J Roberts  Pierre-Antoine Defossez
Institution:1. New England Biolabs, Ipswich, Massachusetts, United States of America.; 2. CNRS UMR7216, Université Paris-Diderot, Paris, France.; 3. CNRS UMR 5547, Université Toulouse 3, Toulouse, France.;National Institute on Aging, United States of America
Abstract:

Background

MBD5 and MBD6 are two uncharacterized mammalian proteins that contain a putative Methyl-Binding Domain (MBD). In the proteins MBD1, MBD2, MBD4, and MeCP2, this domain allows the specific recognition of DNA containing methylated cytosine; as a consequence, the proteins serve as interpreters of DNA methylation, an essential epigenetic mark. It is unknown whether MBD5 or MBD6 also bind methylated DNA; this question has interest for basic research, but also practical consequences for human health, as MBD5 deletions are the likely cause of certain cases of mental retardation.

Principal Findings

Here we report the first functional characterization of MBD5 and MBD6. We have observed that the proteins colocalize with heterochromatin in cultured cells, and that this localization requires the integrity of their MBD. However, heterochromatic localization is maintained in cells with severely decreased levels of DNA methylation. In vitro, neither MBD5 nor MBD6 binds any of the methylated sequences DNA that were tested.

Conclusions

Our data suggest that MBD5 and MBD6 are unlikely to be methyl-binding proteins, yet they may contribute to the formation or function of heterochromatin. One isoform of MBD5 is highly expressed in oocytes, which suggests a possible role in epigenetic reprogramming after fertilization.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号