首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rapid Quantification of Viable Campylobacter Bacteria on Chicken Carcasses,Using Real-Time PCR and Propidium Monoazide Treatment,as a Tool for Quantitative Risk Assessment
Authors:M H Josefsen  C L?fstr?m  T B Hansen  L S Christensen  J E Olsen  J Hoorfar
Institution:National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, 2860 Søborg, Denmark,1. Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark2.
Abstract:A number of intervention strategies against Campylobacter-contaminated poultry focus on postslaughter reduction of the number of cells, emphasizing the need for rapid and reliable quantitative detection of only viable Campylobacter bacteria. We present a new and rapid quantitative approach to the enumeration of food-borne Campylobacter bacteria that combines real-time quantitative PCR (Q-PCR) with simple propidium monoazide (PMA) sample treatment. In less than 3 h, this method generates a signal from only viable and viable but nonculturable (VBNC) Campylobacter bacteria with an intact membrane. The method''s performance was evaluated by assessing the contributions to variability by individual chicken carcass rinse matrices, species of Campylobacter, and differences in efficiency of DNA extraction with differing cell inputs. The method was compared with culture-based enumeration on 50 naturally infected chickens. The cell contents correlated with cycle threshold (CT) values (R2 = 0.993), with a quantification range of 1 × 102 to 1 × 107 CFU/ml. The correlation between the Campylobacter counts obtained by PMA-PCR and culture on naturally contaminated chickens was high (R2 = 0.844). The amplification efficiency of the Q-PCR method was not affected by the chicken rinse matrix or by the species of Campylobacter. No Q-PCR signals were obtained from artificially inoculated chicken rinse when PMA sample treatment was applied. In conclusion, this study presents a rapid tool for producing reliable quantitative data on viable Campylobacter bacteria in chicken carcass rinse. The proposed method does not detect DNA from dead Campylobacter bacteria but recognizes the infectious potential of the VBNC state and is thereby able to assess the effect of control strategies and provide trustworthy data for risk assessment.As Campylobacter remains the leading cause of food-borne bacterial gastrointestinal disease in large parts of the developed world (34), much effort is devoted to improving the detection and elimination of the pathogen, especially in poultry. The ultimate goal is to supply consumers with fresh, Campylobacter-free poultry products, but in order to achieve that goal, it is important to gain more insight into the epidemiology of Campylobacter, to make quantitative risk assessments, and to improve control and intervention strategies.Traditional culture-based detection of Campylobacter bacteria, including enrichment, isolation, and confirmation, is a time-consuming procedure requiring 5 to 6 working days (4, 14). Furthermore, bacterial cells may enter a viable but nonculturable (VBNC) state in which they may have the potential to cause human infection (37) but are not detected by the culture method. The introduction of real-time quantitative PCR (Q-PCR) has enabled faster, more sensitive, and less labor-intensive quantitative detection. Q-PCR methods for food-borne Campylobacter jejuni and C. coli in poultry, which is recognized as an important source of human Campylobacter infections, have been published (11, 12, 15, 38, 46). However, since control strategies mostly focus on reduction of the number of bacterial cells on the chicken carcass, the usefulness of these Q-PCR methods for risk assessment could be limited, since they detect all of the Campylobacter bacteria present in a sample, including the dead cells.The Q-PCR method described in the present study quantifies the three major food-borne Campylobacter species (C. jejuni, C. coli, and C. lari), thereby covering all possible prevalence shifts and coinfections. The PCR assay was previously validated according to the Nordic Organization for Validation of Alternative Microbiological Methods (NordVal) and is certified for detection of Campylobacter bacteria in chickens, cloacal swabs, and boot swabs (7). The present study concerns its suitability for the quantification of Campylobacter bacteria in chicken carcass rinse. Furthermore, a propidium monoazide (PMA) sample treatment step has been incorporated into the method (PMA-PCR), ensuring the quantification of only viable cells with intact membranes. PMA can intercalate into the double-helical DNA available from dead cells with compromised membranes, and upon extensive visible light exposure, cross-linking of the two strands of DNA occurs, leaving it unavailable for PCR amplification (30). PMA is a chemical alteration (additional azide group) of propidium iodide (PI), one of the most frequently applied non-membrane-permeating dyes in flow cytometry, and it can be expected to have the same permeating potential as PI (29). This could be of value from a food safety perspective, since PI penetrates only permeabilized cells and not cells with intact membranes (including the Campylobacter VBNC state), which can still cause infection. Nocker et al. demonstrated that no uptake of PMA occurred in bacterial cells with intact membranes, and PMA was exclusively found in bacteria with compromised membranes (31).PMA sample treatment combined with real-time PCR for detection of viable pathogens has been tested successfully on Listeria monocytogenes and Escherichia coli O157:H7 (31, 36). However, these studies were limited to laboratory-cultured strains and the methods have not been validated on naturally infected samples with the pathogen embedded in a food matrix.This is the first study to establish a correlation between results obtained by PMA-PCR and culture-based enumeration of Campylobacter bacteria for a large number of naturally infected chickens.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号