Identification of Cross-Reactive Norovirus CD4+ T Cell Epitopes |
| |
Authors: | Anna D. LoBue Lisa C. Lindesmith Ralph S. Baric |
| |
Affiliation: | Department of Microbiology and Immunology, School of Medicine,1. Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 275992. |
| |
Abstract: | Immune responses and the components of protective immunity following norovirus infection in humans are poorly understood. Although antibody responses following norovirus infection have been partially characterized, T cell responses in humans remain largely undefined. In contrast, T cells have been shown to be essential for viral clearance of mouse norovirus (MNV) infection. In this paper, we demonstrate that CD4+ T cells secrete gamma interferon (IFN-γ) in response to stimulation with MNV virus-like particles (VLPs) after MNV infection, supporting earlier reports for norovirus-infected mice and humans. Utilizing this model, we immunized mice with alphavirus vectors (Venezuelan equine encephalitis [VEE] virus replicon particles [VRPs]) expressing Norwalk virus (NV) or Farmington Hills virus (FH) virus-like particles to evaluate T cell epitopes shared between human norovirus strains. Stimulation of splenocytes from norovirus VRP-immunized mice with overlapping peptides from complete libraries of the NV or FH capsid proteins revealed specific amino acid sequences containing T cell epitopes that were conserved within genoclusters and genogroups. Immunization with heterologous norovirus VRPs resulted in specific cross-reactive IFN-γ secretion profiles following stimulation with NV and FH peptides in the mouse. Identification of unique strain-specific and cross-reactive epitopes may provide insight into homologous and heterologous T cell-mediated norovirus immunity and provide a platform for the study of norovirus-induced cellular immunity in humans.Norovirus infection is characterized by the induction of both humoral and cellular immune responses. Humoral immunity in humans following norovirus infection has been described in detail for a limited number of norovirus strains (8, 10, 12, 17, 18, 29). Humans mount specific antibody responses to the infecting strain, which bear complex patterns of unique and cross-reactive, yet undefined, epitopes to other strains within or across genogroups (23, 29). Short-term immunity following homologous norovirus challenge has been documented, but long-term immunity remains controversial (16, 25). Furthermore, no studies to date have demonstrated cross-protection following heterologous norovirus challenge (30). While some susceptible individuals can become reinfected with multiple norovirus strains throughout their lifetimes, the mechanism of short-term protection and the impact of previous exposures on susceptibility to reinfection remain largely unknown.The role of T cells in controlling norovirus infection also remains largely undefined. A single comprehensive study detailing immune responses in genogroup II Snow Mountain virus-infected individuals revealed that CD4+ TH1 cells can be stimulated by virus-like particles (VLPs) to secrete gamma interferon (IFN-γ) and interleukin-2 (IL-2) (17). Furthermore, heterologous stimulation from VLPs derived from different norovirus strains within but not across genogroups also induced significant IFN-γ secretion compared to that for uninfected individuals (17). A follow-up study with genogroup I Norwalk virus (NV)-infected individuals confirmed high T cell cross-reactivity within a genogroup as measured by IFN-γ secretion (18). Further, vaccination of humans with VLPs also results in short-term IFN-γ production (27).Because norovirus infection studies in humans are confounded by previous exposure histories, the use of inbred mice maintained in pathogen-free environments allows for the study of norovirus immune responses in a naive background. While mice cannot be infected with human norovirus strains, VLP vaccines expressing norovirus structural proteins induce immune responses that can be measured and studied (14, 20). Mice immunized orally or intranasally with VLP vaccines in the presence of adjuvant similarly induced CD4+ IFN-γ responses in Peyer''s patches and spleen (22, 26). Induction of CD8+ T cells and secretion of the TH2 cytokine IL-4 were separately noted; however, it is unclear if these responses were influenced by VLPs or the coadministered vaccine adjuvants (22, 26). Further, coadministration of alphavirus adjuvant particles with multivalent norovirus VLP vaccine, including or excluding mouse norovirus (MNV) VLPs, resulted in significantly reduced MNV loads following MNV challenge (21). Multivalent VLP vaccines induced robust receptor-blocking antibody responses to heterologous human strains not included in the vaccine composition (20, 21). Moreover, natural infection with MNV supports a role for T cell immunity in viral clearance and protection (5).To advance our understanding of the scope of the cellular immune response within and between strains, we immunized mice with Venezuelan equine encephalitis (VEE) virus replicon particles (VRPs) expressing norovirus VLPs derived from the Norwalk virus (GI.1-1968) (1) or Farmington Hills virus (FH) (GII.4-2002) (19) strains and analyzed splenocytes for cytokine secretion, epitope identification, and heterologous stimulation. The data presented here indicate that the major capsid proteins of genogroup I and II noroviruses contain robust T cell epitopes that cross-react with related strains in the mouse yet also occur within regions of known variation, especially among the GII.4 noroviruses. |
| |
Keywords: | |
|
|