首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Native 67-Kilodalton Minor Fimbria of Porphyromonas gingivalis Is a Novel Glycoprotein with DC-SIGN-Targeting Motifs
Authors:Amir E Zeituni  William McCaig  Elizabeth Scisci  David G Thanassi  Christopher W Cutler
Institution:Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, New York,1. Department of Periodontics and Implantology, Stony Brook University School of Dental Medicine, Stony Brook, New York2.
Abstract:We recently reported that the oral mucosal pathogen Porphyromonas gingivalis, through its 67-kDa Mfa1 (minor) fimbria, targets the C-type lectin receptor DC-SIGN for invasion and persistence within human monocyte-derived dendritic cells (DCs). The DCs respond by inducing an immunosuppressive and Th2-biased CD4+ T-cell response. We have now purified the native minor fimbria by ion-exchange chromatography and sequenced the fimbria by tandem mass spectrometry (MS/MS), confirming its identity and revealing two putative N-glycosylation motifs as well as numerous putative O-glycosylation sites. We further show that the minor fimbria is glycosylated by ProQ staining and that glycosylation is partially removed by treatment with β(1-4)-galactosidase, but not by classic N- and O-linked deglycosidases. Further monosaccharide analysis by gas chromatography-mass spectrometry (GC-MS) confirmed that the minor fimbria contains the DC-SIGN-targeting carbohydrates fucose (1.35 nmol/mg), mannose (2.68 nmol/mg), N-acetylglucosamine (2.27 nmol/mg), and N-acetylgalactosamine (0.652 nmol/mg). Analysis by transmission electron microscopy revealed that the minor fimbria forms fibers approximately 200 nm in length that could be involved in targeting or cross-linking DC-SIGN. These findings shed further light on molecular mechanisms of invasion and immunosuppression by this unique mucosal pathogen.Porphyromonas gingivalis is one of several mucosal pathogens that have been implicated in chronic periodontitis (CP), a common oral disease that may affect 40 to 60% of the U.S. population (7). P. gingivalis utilizes a myriad of virulence factors that contribute to chronic periodontitis. Among these are a polysaccharide capsule, fimbriae, proteases for opsonins C3 and IgG, gingipains (21, 30, 43, 52), bacterial lipopolysaccharides (LPS) (22, 44), and toxins and hemagglutinins (10, 25).The fimbriae of P. gingivalis play a crucial role in adhesion to and invasion of host cells. We have shown that optimum entry of P. gingivalis into human dendritic cells (DCs) requires the presence of two fimbriae, termed the major and minor fimbriae. The major fimbria is composed of a 41-kDa protein termed fimbrillin, encoded by the fimA gene (65). Much less is known about the minor fimbria, the focus of this paper. The minor fimbria is comprised of a 67-kDa protein (19) that is encoded by the mfa1 gene. The major and minor fimbriae are antigenically distinct, and they also differ based on amino acid composition and size (5, 19). Very little is understood about the formation and secretion of the minor fimbriae and about possible posttranslational modifications of these fimbriae. Formation and secretion of the major fimbriae is a complex reaction consisting of numerous steps required for transfer of prefimbrillin proteins from the cytoplasm to the periplasm, cleavage of the N-terminal signal peptide (24, 50), transport of prefimbrillin to the outer face of the outer membrane, and assembly into fimbria structures (23, 24, 34).Deciphering the cellular receptors for the fimbriae is an active area of research. Evidence suggests that the cellular targets of the major fimbriae are the β-1 integrins (CD29) (32, 66). Others have proposed a role for β-2 integrins (CD18) (17, 18, 55) in the cellular response to major fimbriae. In contrast, little is known of the cellular receptors for the minor fimbriae. Lamont et al. in 2002 showed that the minor fimbria of P. gingivalis intimately interacts with the SspB protein of Streptococcus gordonii (26). This interaction might aid in P. gingivalis colonization of plaque biofilm before it invades gingival tissue (26, 41). We recently showed that the minor fimbria targets DC-SIGN on DCs for entry into DCs and that this targeting has the immunological consequence of dampening the immune response (68).DC-SIGN is a type II membrane protein on DCs in which the extracellular domain consists of a stalk that promotes tetramerization (13). DC-SIGN contains a C-terminal carbohydrate-recognizing domain (CRD) that belongs to the C-type lectin superfamily (13). Early studies by Feinberg et al. in 2001 showed that the DC-SIGN CRD preferentially binds to the high-mannose N-linked oligosaccharides GlcNAc (N-acetylglucosamine) and Manα1-3Manα1-6] Man (mannose) (13). Furthermore, Appelmelk et al. showed that DC-SIGN also binds to fucose-containing Lewis blood antigens (4). Guo et al. utilized an extensive glycan array and showed that DC-SIGN will bind high-mannose-containing glycans or glycans that contain terminal fucose residues (16). Previous studies showed that DC-SIGN on DCs is used by microorganisms such as Neisseria gonorrhoeae, Mycobacterium tuberculosis, Mycobacterium leprae, HIV, and Helicobacter pylori for entry into DCs and induction of immunosuppression (4, 27, 42, 51, 69). Like P. gingivalis, many of these pathogens can induce chronic life-long infections.Our previously published work established that the minor fimbria is necessary for targeting DC-SIGN, resulting in entry of P. gingivalis into DCs (68). We were able to abrogate minor fimbria-mediated DC-SIGN ligation by using DC-SIGN-blocking agents or agonists, including fucose, mannose, and mannan (68). Additionally, we described that the minor fimbria is able to induce immunosuppression of DCs via its interaction with DC-SIGN, which was blocked by sugars (68). Further, we demonstrated that minor fimbriated strains of P. gingivalis inhibited DC maturation and suppressed proinflammatory cytokine secretion (68). Moreover, DCs that were pulsed with minor fimbriated strains of P. gingivalis and then cocultured with autologous T cells shifted the T-cell effector phenotype to a Th2 effector phenotype, as evidenced by high interleukin-4 (IL-4) production (68).Our previous results, described above, suggested that the minor fimbria-DC-SIGN interaction was mediated by glycosylated proteins. We therefore set out to identify the carbohydrate moieties on the minor fimbria that could account for its DC-SIGN-targeting function. The intact native minor fimbria was purified and analyzed for glycosylation and for the presence of relevant monosaccharides. We show here by a combination of ProQ gel staining and gas chromatography-mass spectrometry (GC-MS) analysis that the minor fimbria is glycosylated and expresses the DC-SIGN ligands fucose, mannose, GlcNAc, and GalNAc. Use of classic N- and O-linked deglycosidases on the native minor fimbria revealed a novel glycoprotein structure. Overall, these results indicate that the minor fimbria is glycosylated with DC-SIGN-binding motifs that likely account for the reported ability of P. gingivalis to bind to and invade DCs, resulting in an immunosuppressive DC response.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号