首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Redesigning the active site of a carboxyl esterase from the archaeon Archaeoglobus fulgidus to improve sensitivity to organophosphorus compounds
Authors:Yuexi Wang  Binchun Li  Weiwei Han  Guangyu Yang  Zuoming Zhang  Yan Feng
Institution:1. State Key Laboratory of Microbial Metabolism, College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;2. Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130021, China
Abstract:Organophosphorus compounds (OPs) are widely used as pesticides because of their ability to inhibit the activity of acetylcholinesterase (AChE) in the nervous system. Thus, AChE is generally used as a biosensor for pesticide detection. Due to the instability of AChE a more stable enzyme would be desirable for robust applications. We investigated the sensitivity of a thermostable carboxylesterase from the archaeon Archaeoglobus fulgidus (AFEST) to seven selected OPs. The IC50 of dichlorvos against AFEST (50.8 ± 2.6 nM) was 10-fold lower than that of the commercially obtained AChE, indicating that AFEST had higher sensitivity. Its sensitivity for the other OPs was lower than AChE. To enhance the sensitivity of AFEST to OPs, site-directed mutations were introduced in the cap domain of AFEST. The sensitivity of mutant N44S/S48V was enhanced toward all seven OPs compared to the wild-type and was higher than AChE for four OPs, including paraoxon (3.3 ± 0.01 nM), dichlorvos (28.0 ± 0.6 nM), profenofos (43.0 ± 1.0 nM), and diazinon (3.0 ± 0.2 nM). The half-lives of AFEST and the mutant N44S/S48V at 37 °C were over 15 d. The interactions between the enzymes and select OPs were investigated by molecular docking. The results demonstrated that AFEST and the mutant N44S/S48V have the potential to be biosensor for OP detection.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号