首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Loss of shear stress induces leukocyte-mediated cytokine release and blood-brain barrier failure in dynamic in vitro blood-brain barrier model
Authors:Krizanac-Bengez Ljiljana  Mayberg Marc R  Cunningham Edwin  Hossain Mohammed  Ponnampalam Stephen  Parkinson Fiona E  Janigro Damir
Institution:Department of Neurological Surgery, Cerebrovascular Research Center, Cleveland, Ohio 44195, USA. bengezl@ccf.org
Abstract:Brain ischemia is associated with an acute release of pro-inflammatory cytokines, notably TNF-alpha and IL-6 and failure of the blood-brain barrier. Shear stress, hypoxia-hypoglycemia, and blood leukocytes play a significant role in blood-brain barrier failure during transient or permanent ischemia. However, these mechanisms have not been studied as independent variables for in vitro ischemia. The present study, using a dynamic in vitro blood-brain barrier model, showed that flow cessation/reperfusion under normoxia-normoglycemia or hypoxia-hypoglycemia without blood leukocytes in the luminal perfusate had a modest, transient effect on cytokine release and blood-brain barrier permeability. By contrast, exposure to normoxic-normoglycemic flow cessation/reperfusion with blood leukocytes in the luminal perfusate led to a significant increase in TNF-alpha and IL-6, accompanied by biphasic blood-brain barrier opening. Enhanced permeability was partially prevented with an anti-TNF-alpha antibody. In leukocyte-free cartridges, the same levels of IL-6 had no effect, while TNF-alpha caused a moderate increase in blood-brain barrier permeability, suggesting that blood leukocytes are the prerequisite for cytokine release and blood-brain barrier failure during reduction or cessation of flow. These cells induce release of TNF-alpha early after ischemia/reperfusion; TNF-alpha triggers release of IL-6, since blockade of TNF-alpha prevents IL-6 release, whereas blockade of IL-6 induces TNF-alpha release. Pre-treatment of blood leukocytes with the cyclooxygenase (COX) inhibitor, ibuprofen, inhibited cytokine release and completely preserved blood-brain barrier permeability during the reperfusion period. In conclusion, loss of flow (flow cessation/reperfusion) independent of hypoxia-hypoglycemia plays a significant role in blood-brain barrier failure by stimulating leukocyte-mediated inflammatory mechanisms.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号