首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Isolation and phenotypic characterization of Myxococcus xanthus mutants which are defective in sensing negative stimuli.
Authors:W Shi  T Khler  and D R Zusman
Institution:W Shi, T Köhler, and D R Zusman
Abstract:Myxococcus xanthus is a gram-negative gliding bacterium that exhibits a complex life cycle. Exposure of M. xanthus to chemicals like dimethyl sulfoxide (DMSO) at nondeleterious concentrations or the depletion of nutrients caused several negative responses by the cells. DMSO (> 0.1 M) or nutrient depletion triggered a repellent response: cell swarming was inhibited and FrzCD (a methyl-accepting chemotaxis protein) was demethylated; higher concentrations of DMSO (> 0.3 M) or prolonged starvation induced an additional response which involved cellular morphogenesis: DMSO caused cells to convert from rod-shaped vegetative cells to spherical, environmentally resistant "DMSO spores," and starvation induced myxospore formation in the fruiting bodies. In order to investigate the nature of these responses, we isolated a number of mutants defective in negative chemotaxis and/or sporulation. Characterization of these mutants indicated that negative chemotaxis plays an important role in colony swarming and in developmental aggregation. In addition, the results revealed some of the major interrelationships between the signal transduction pathways which respond to negative stimuli: (i) DMSO exposure and starvation were initially sensed by different systems, the neg system for DMSO and the stv system for starvation; (ii) the repellent response signals triggered by DMSO or starvation were then relayed by the frz signal transduction system; mutants defective in these responses showed altered FrzCD methylation patterns; and (iii) the morphogenesis signals in response to DMSO or starvation utilize a group of genes involved in sporulation (spo).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号