首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dielectrophoretic registration of living cells to a microelectrode array
Authors:Gray Darren S  Tan John L  Voldman Joel  Chen Christopher S
Institution:Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Abstract:We present a novel microfabricated device to simultaneously and actively trap thousands of single mammalian cells in alignment with a planar microelectrode array. Thousands of 3 Ipm diameter trapping electrodes were fabricated within the bottom of a parallel-plate flow chamber. Cells were trapped on the electrodes and held against destabilizing fluid flows by dielectrophoretic forces generated in the device.In general, each electrode trapped only one cell. Adhesive regions were patterned onto the surface in alignment with the traps such that cells adhered to the array surface and remained in alignment with the electrodes. By driving the device with different voltages, we showed that trapped cells could be killed by stronger electric fields. However, with weaker fields, cells were not damaged during trapping, as indicated by the similar morphologies and proliferation rates of trapped cells versus controls. As a test of the device, we patterned approximately 20,000 cells onto aI cm2 grid of rectangular adhesive regions, with two electrodes and thus two cells per rectangle. Our method obtained 70 +/- 1% fidelity versus 17 +/- 1% when using an existing cell-registration technique. By allowing the placement of desired numbers of cells at specified locations, this approach addresses many needs to manipulate and register cells to the surfaces of biosensors and other devices with high precision and fidelity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号