首页 | 本学科首页   官方微博 | 高级检索  
   检索      


pH dependent changes in the reactivity of the primary electron acceptor of system II in spinach chloroplasts to external oxidant and reductant.]
Authors:S Itoh  M Nishimura
Abstract:Two pure phospholipids, dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine, have been studied using freeze-fracture electron microscopy and the partitioning of the spin label, TEMPO. It is found that the characteristic band pattern, corresponding to monoclinic symmetry in multilamellar liposomes, is observed only in freeze-fracture electron microphotographs when samples are quenched from temperatures intermediate between the chain melting transition temperature and the pretransition temperature of the membrane. Markings are also observed on fracture faces of samples quenched from below the pretransition, but these "bands" are few in number and are widely and irregularly spaced. The lipid membranes used for freeze-fracture were prepared using detergent dialysis and are thought to consist of one, two, or some small number of concentric bilayer shells. These observations are in excellent accord with the recent, prior studies of Janiak, M.J., Small, D.M. and Shirley, G.G., ((1976) Biochemistry 15, 4575--4580), who found monoclinic symmetry (Pbeta' structure) in multilamellar liposomes of these phospholipids only when the sample temperature was intermediate between the main, chain melting transition temperature, and the pretransition temperature. The significance of these results for relating freeze-fracture electron microphotographis to phase diagrams derived from spin label or calorimetric data is discussed briefly. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) partitioning data show distinct differences between liposomal preparations of these lipids, and other preparations having fewer bilayers per vesicular structure, with respect to the position, width, and hysteresis of the pretransition.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号