Hormonal modulation of neuronal cells behaviour in vitro |
| |
Authors: | A Gyévi E Bartha |
| |
Affiliation: | Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest. |
| |
Abstract: | In this study we have investigated the effect of insulin and/or of nerve growth factor (NGF) on enzyme activities of cholinergic neurotransmission, in cultured embryonic rat mesencephali. Our data show that choline-O-acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity display a prominent change in the embryonic brain tissues as a function of time in vitro. The change depends on the age of embryos from which the brain cell cultures have been set up. Namely, ChAT activity increases in the cultures taken from 13-17-day-old embryos as a function of time in vitro. AChE activity shows a striking decrease if the cultures have been set up from the older embryos (17-day-old), while AChE activity increases in the cultures prepared from 13-day-old embryos continuously. Insulin (amount ranging 10-27 micrograms/ml) causes a significant inhibition in the ChAT activity in comparison with the increased enzyme activity measured in control cultures (insulin ranging from 1 to 100 ng). AChE activity of 13-day-old embryos was not influenced by insulin (20-27 micrograms/ml) but the same amount of insulin prevents the decrease of AChE activity in cultured brain cells originating from 17-day-old-embryos. Biochemical studies of NGF treated cultures (30 ng/ml) revealed that nerve growth factor resulted in 5-12-fold increase in specific activity of the cholinergic enzyme, choline acetyltransferase (ChAT). NGF did not influence the AChE activity in cultured brain cells (13-17-day-old). |
| |
Keywords: | |
|
|