首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A New Resource for Characterizing X-Linked Genes in Drosophila melanogaster: Systematic Coverage and Subdivision of the X Chromosome With Nested,Y-Linked Duplications
Authors:R Kimberley Cook  Megan E Deal  Jennifer A Deal  Russell D Garton  C Adam Brown  Megan E Ward  Rachel S Andrade  Eric P Spana  Thomas C Kaufman  Kevin R Cook
Institution:*Bloomington Drosophila Stock Center, Department of Biology, Indiana University, Bloomington, Indiana 47405 and Model System Genomics Group, Department of Biology, Duke University, Durham, North Carolina 27708
Abstract:Interchromosomal duplications are especially important for the study of X-linked genes. Males inheriting a mutation in a vital X-linked gene cannot survive unless there is a wild-type copy of the gene duplicated elsewhere in the genome. Rescuing the lethality of an X-linked mutation with a duplication allows the mutation to be used experimentally in complementation tests and other genetic crosses and it maps the mutated gene to a defined chromosomal region. Duplications can also be used to screen for dosage-dependent enhancers and suppressors of mutant phenotypes as a way to identify genes involved in the same biological process. We describe an ongoing project in Drosophila melanogaster to generate comprehensive coverage and extensive breakpoint subdivision of the X chromosome with megabase-scale X segments borne on Y chromosomes. The in vivo method involves the creation of X inversions on attached-XY chromosomes by FLP-FRT site-specific recombination technology followed by irradiation to induce large internal X deletions. The resulting chromosomes consist of the X tip, a medial X segment placed near the tip by an inversion, and a full Y. A nested set of medial duplicated segments is derived from each inversion precursor. We have constructed a set of inversions on attached-XY chromosomes that enable us to isolate nested duplicated segments from all X regions. To date, our screens have provided a minimum of 78% X coverage with duplication breakpoints spaced a median of nine genes apart. These duplication chromosomes will be valuable resources for rescuing and mapping X-linked mutations and identifying dosage-dependent modifiers of mutant phenotypes.MANY eukaryotes of biomedical and agricultural importance—including humans, other mammals, birds, and Drosophila—are heterogametic. Their sex chromosomes differ drastically in size and genetic composition. In species with X and Y chromosomes, males carry only one copy of each X-linked gene. This poses a serious challenge for experimental geneticists, because males inheriting a mutation in a vital X-linked gene die before they can be used in genetic crosses. In fact, the hemizygosity of X-linked genes in males has been a significant barrier to the functional analysis of many X-linked genes and is largely responsible for the poor genetic characterization of X chromosomes relative to autosomes in most organisms.The lethality of X-linked mutations can be rescued by providing a wild-type copy of the mutated gene elsewhere in the genome. This can be accomplished with a transgenic construct if the molecular identity of the mutated gene is known. In many cases, however, the mutated gene has not been identified and it is necessary to provide wild-type function with a multigene interchromosomal duplication, i.e., a segment of the X inserted in another chromosome. If the proximal and distal extents of the duplicated segment are known, phenotypic rescue maps the mutated gene to the defined X chromosome region.Multigene deletions can also be used to map X-linked mutations by complementation, but crosses between individuals carrying deletions and X-linked lethal mutations are impossible without rescuing the lethality of either the deletion or the lethal mutation in males. Projects at the Bloomington Drosophila Stock Center and elsewhere (Parks et al. 2004; Ryder et al. 2007) have generated large collections of deletions with molecularly defined breakpoints in Drosophila melanogaster, but the utility of the X deletions is limited without duplications of the corresponding chromosomal regions.Duplications are potentially important for gene discovery. Identifying sets of genes involved in the same cellular process is a major focus of functional genomics research and this can be accomplished genetically by identifying dosage-sensitive modifiers of mutant phenotypes. Often, increasing or decreasing the copy number of a gene will enhance or suppress the phenotype associated with mutating another gene involved in the same process. Screening collections of deletions is a popular way to identify interacting genes in Drosophila (for examples, see Seher et al. 2007; Zhao et al. 2008; Aerts et al. 2009; Salzer et al. 2010) and was a major impetus for the assembly of the Bloomington Stock Center “Deficiency Kit,” which provides maximal coverage of the genome with the fewest deletions. Though dosage-sensitive modifiers could also be identified using increased gene dosage, the use of duplications in enhancer and suppressor screens remains largely unexplored. Assembling sets of duplications providing efficient genomic coverage would likely popularize this experimental approach.The size of duplicated segments determines how duplication chromosomes are used experimentally. Small duplicated segments allow high resolution gene mapping, but they are not suitable for other purposes. Only large duplicated segments are capable of rescuing the lethality of sizable multigene X deletions. Likewise, large duplicated segments provide efficiency in initially localizing mutations and identifying dosage-dependent modifiers. Despite their usefulness, interchromosomal duplications of large segments are among the hardest chromosomal rearrangements to isolate. In Drosophila, many existing duplications were recovered fortuitously as three-breakpoint aberrations following irradiation, but such rearrangements are rare and difficult to identify in screens. Other duplications were methodically constructed from preexisting rearranged chromosomes. This approach works well when it is possible, but it can be used only when progenitor aberrations with appropriate breakpoints are available. Because of these difficulties, the selection of duplication strains generated by Drosophila workers over the past several decades is not satisfactory for many purposes. The duplications are often difficult to use experimentally, their breakpoints are sparsely distributed along the X chromosome and only roughly mapped, and substantial gaps in coverage exist. Obviously, improved duplication resources are needed.Here we present the methodology and progress of a project at the Bloomington Drosophila Stock Center to construct interchromosomal duplications of large, megabase-scale X segments. Our approach builds on the long history of manipulating Drosophila chromosomes in vivo (Novitski and Childress 1976; Ashburner et al. 2005), but we have eliminated the need for preexisting aberrations by generating progenitor chromosomes using the FLP-FRT system. Indeed, this site-specific recombination system has had an enormous impact on the ability of fly geneticists to engineer many kinds of novel chromosomes (Golic and Golic 1996; Parks et al. 2004; Ryder et al. 2007). We will demonstrate how we have combined FLP-mediated recombination and other chromosome manipulation techniques to produce Y-linked duplications of large X segments. As we will show, appending X segments to Y chromosomes rather than autosomes has advantages both for the synthesis and experimental use of X duplications.To date, we have generated a minimum of 78% X coverage with duplication breakpoints spaced a median of nine genes apart. We anticipate completion of the project within the coming year. Using these duplications, mutations and genetic modifiers can be mapped first to large X intervals using a tiling set of the largest duplicated segments and then to small chromosome intervals using subsets of the duplications. These duplications will also facilitate deletion mapping. The creation of a set of stocks providing complete duplication coverage and extensive breakpoint subdivision of the X chromosome in a consistent genetic background will remove an impediment to investigating the functions of X-linked genes that has frustrated generations of Drosophila geneticists.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号