首页 | 本学科首页   官方微博 | 高级检索  
     


Endogenous RGS protein action modulates mu-opioid signaling through Galphao. Effects on adenylyl cyclase,extracellular signal-regulated kinases,and intracellular calcium pathways
Authors:Clark Mary J  Harrison Charlotte  Zhong Huailing  Neubig Richard R  Traynor John R
Affiliation:Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-0632, USA.
Abstract:RGS (regulators of G protein signaling) proteins are GTPase-activating proteins for the Galpha subunits of heterotrimeric G proteins and act to regulate signaling by rapidly cycling G protein. RGS proteins may integrate receptors and signaling pathways by physical or kinetic scaffolding mechanisms. To determine whether this results in enhancement and/or selectivity of agonist signaling, we have prepared C6 cells stably expressing the mu-opioid receptor and either pertussis toxin-insensitive or RGS- and pertussis toxin-insensitive Galpha(o). We have compared the activation of G protein, inhibition of adenylyl cyclase, stimulation of intracellular calcium release, and activation of the ERK1/2 MAPK pathway between cells expressing mutant Galpha(o) that is either RGS-insensitive or RGS-sensitive. The mu-receptor agonist [d-Ala(2),MePhe(4),Gly(5)-ol]enkephalin and partial agonist morphine were much more potent and/or had an increased maximal effect in inhibiting adenylyl cyclase and in activating MAPK in cells expressing RGS-insensitive Galpha(o). In contrast, mu-opioid agonist increases in intracellular calcium were less affected. The results are consistent with the hypothesis that the GTPase-activating protein activity of RGS proteins provides a control that limits agonist action through effector pathways and may contribute to selectivity of activation of intracellular signaling pathways.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号