首页 | 本学科首页   官方微博 | 高级检索  
     


Conservation and variation in enamel protein distribution during vertebrate tooth development
Authors:Satchell Paul G  Anderton Xochitl  Ryu Okhee H  Luan Xianghong  Ortega Adam J  Opamen Rene  Berman Brett J  Witherspoon David E  Gutmann James L  Yamane Akira  Zeichner-David Margerita  Simmer James P  Shuler Charles F  Diekwisch Thomas G H
Affiliation:Baylor College of Dentistry/Texas A&M University System, Dallas, Texas, USA.
Abstract:Vertebrate enamel formation is a unique synthesis of the function of highly specialized enamel proteins and their effect on the growth and organization of apatite crystals. Among tetrapods, the physical structure of enamel is highly conserved, while there is a greater variety of enameloid tooth coverings in fish. In the present study, we postulated that in enamel microstructures of similar organization, the principle components of the enamel protein matrix would have to be highly conserved. In order to identify the enamel proteins that might be most highly conserved and thus potentially most essential to the process of mammalian enamel formation, we used immunoscreening with enamel protein antibodies as a means to assay for degrees of homology to mammalian enamel proteins. Enamel preparations from mouse, gecko, frog, lungfish, and shark were screened with mammalian enamel protein antibodies, including amelogenin, enamelin, tuftelin, MMP20, and EMSP1. Our results demonstrated that amelogenin was the most highly conserved enamel protein associated with the enamel organ, enamelin featured a distinct presence in shark enameloid but was also present in the enamel organ of other species, while the other enamel proteins, tuftelin, MMP20, and EMSP1, were detected in both in the enamel organ and in other tissues of all species investigated. We thus conclude that the investigated enamel proteins, amelogenin, enamelin, tuftelin, MMP20, and EMSP1, were highly conserved in a variety of vertebrate species. We speculate that there might be a unique correlation between amelogenin-rich tetrapod and lungfish enamel with long and parallel crystals and enamelin-rich basal vertebrate enameloid with diverse patterns of crystal organization.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号