Two genes encode the major membrane-associated protein of methanol-induced peroxisomes from Candida boidinii |
| |
Authors: | L J Garrard J M Goodman |
| |
Affiliation: | Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas 75235. |
| |
Abstract: | A massive proliferation of peroxisomes occurs in the yeast Candida boidinii when methanol is utilized as the sole carbon source; these peroxisomes contain the enzymes which catalyze the initial steps of methanol utilization. The most abundant peroxisomal membrane-associated protein has an apparent molecular mass of 20 kDa and is termed PMP20. We report the isolation of two genes that encode very similar forms of PMP20; this is the first report of genes that encode proteins associated with peroxisomal membranes. Southern analysis demonstrates that the two genes are on different loci, although there are several homologous regions of both 5'- and 3'-untranslated sequence. One of the areas of 5' homology is within the untranslated region of the mRNA. Within the coding region there are 35 base differences between the two genes that are reflected in only five amino acid differences. The mRNAs representing both genes of PMP20 are induced in cells grown in methanol-containing medium and are below detection in cells grown in glucose. S1 nuclease protection analysis indicates that there is a 2.5-fold difference in mRNA expression between the two genes when induced. The predicted sequences of both PMP20 genes show the absence of a cleaved amino-terminal leader sequence and the presence of only 1 cysteine residue. In agreement with previous biochemical data suggesting a peripheral association of this protein with the membrane (Goodman, J. M., Maher, J., Silver, P. A., Pacifico, A., and Sanders, D. (1986) J. Biol. Chem. 261, 3464-3468), there are no obvious membrane spanning regions predicted in the sequences. Both PMP20 gene products contain the carboxyl-terminal sequence AKL, similar to the putative SKL peroxisomal sorting sequence (Gould, S. J., Keller, G.-A., and Subramani, S. (1988) J. Cell Biol. 107, 897-905). |
| |
Keywords: | |
|
|