首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Direct selection of mutations in the human mitochondrial tRNAThr gene: reversion of an 'uncloneable' phenotype
Authors:S Mita  R J Monnat  L A Loeb
Institution:Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology SM-30, University of Washington, Seattle 98195.
Abstract:Several regions of the human mitochondrial genome are refractory to cloning in plasmid and bacteriophage DNA vectors. For example, recovery of recombinant M13 clones containing a 462 basepair MboI-Kpn I restriction fragment that spans nucleotide positions 15591 to 16053 of HeLa cell mitochondrial DNA was as much as 100-fold lower than the recovery of M13 clones containing other regions of the human mitochondrial genome. All of 50 recombinant M13 clones containing this 'uncloneable' fragment had one or more changes in nucleotide sequence. Each clone contained at least one alteration in two nucleotide positions within the tRNAThr gene that encode portions of the anticodon loop and D-stem of the HeLa mitochondrial tRNAThr. These results imply that the HeLa mitochondrial tRNAThr gene is responsible for the 'uncloneable' phenotype of this region of human mitochondrial (mt) DNA. A total of 61 nucleotide sequence alterations were identified in 50 independent clones containing the HeLa mt tRNAThr gene. 56 mutations were single-base substitutions; 5 were deletions. Approximately 80% of the base substitution mutations were A:T----G:C transitions. A preference for A:T----G:C transition mutations also characterizes polymorphic base substitution variants in the mitochondrial DNA of unrelated individuals. This similarity suggests that human mitochondrial DNA sequence variation within and between individuals may have a common origin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号