首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Describing the role of Drosophila melanogaster ABC transporters in insecticide biology using CRISPR-Cas9 knockouts
Institution:1. Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, United States;2. Department of Biological Sciences and Environmental Sciences Program, Southern Illinois University-Edwardsville, Edwardsville, IL 62026, United States;3. Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States;4. Department of Entomology & Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, United States
Abstract:ABC transporters have a well-established role in drug resistance, effluxing xenobiotics from cells and tissues within the organism. More recently, research has been dedicated to understanding the role insect ABC transporters play in insecticide toxicity, but progress in understanding the contribution of specific transporters has been hampered by the lack of functional genetic tools. Here, we report knockouts of three Drosophila melanogaster ABC transporter genes, Mdr49, Mdr50, and Mdr65, that are homologous to the well-studied mammalian ABCB1 (P-glycoprotein). Each knockout mutant was created in the same wild type background and tested against a panel of insecticides representing different chemical classes. Mdr65 knockouts were more susceptible to all neuroactive insecticides tested, but Mdr49 and Mdr50 knockouts showed increased susceptibility or resistance depending on the insecticide used. Mdr65 was chosen for further analysis. Calculation of LC50 values for the Mdr65 knockout allowed the substrate specificity of this transporter to be examined. No obvious distinguishing structural features were shared among MDR65 substrates. A role for Mdr65 in insecticide transport was confirmed by testing the capacity of the knockout to synergize with the ABC inhibitor verapamil and by measuring the levels of insecticide retained in the body of knockout flies. These data unambiguously establish the influence of ABC transporters on the capacity of wild type D. melanogaster to tolerate insecticide exposure and suggest that both tissue and substrate specificity underpin this capacity.
Keywords:P-glycoprotein  ABCB1  Multi-drug resistance  CRISPR-Cas9  Insecticide resistance  BBB"}  {"#name":"keyword"  "$":{"id":"kwrd0045"}  "$$":[{"#name":"text"  "_":"Blood Brain Barrier  HPLC-MS"}  {"#name":"keyword"  "$":{"id":"kwrd0055"}  "$$":[{"#name":"text"  "_":"high pressure liquid chromatography coupled with mass spectrometry  P450"}  {"#name":"keyword"  "$":{"id":"kwrd0065"}  "$$":[{"#name":"text"  "_":"Cytochrome P450  ABC"}  {"#name":"keyword"  "$":{"id":"kwrd0075"}  "$$":[{"#name":"text"  "_":"ABC Transporter
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号