首页 | 本学科首页   官方微博 | 高级检索  
     


The interacting effect of prolonged darkness and temperature on photophysiological characteristics of three Antarctic phytoplankton species
Authors:Willem H. van de Poll,Talia Abi   Nassif
Affiliation:1. CIO Oceans, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands;2. CIO Oceans, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands

Contribution: Conceptualization (supporting), Data curation (supporting), Formal analysis (supporting), Funding acquisition (supporting), ​Investigation (supporting), Methodology (supporting), Project administration (lead), Resources (supporting), Software (equal), Supervision (supporting), Validation (supporting), Visualization (supporting), Writing - original draft (supporting), Writing - review & editing (supporting)

Abstract:Photophysiological characteristics of the Southern Ocean phytoplankton species Phaeocystis antarctica, Geminigera cryophila, and Chaetoceros simplex were assessed during 7 weeks of darkness and subsequent recovery after darkness at 4 and 7°C. Chlorophyll a fluorescence and maximum quantum efficiency of PSII decreased during long darkness in a species-specific manner, whereas chlorophyll a concentration remained mostly unchanged. Phaeocystis antarctica showed the strongest decline in photosynthetic fitness during darkness, which coincided with a reduced capacity to recover after darkness, suggesting a loss of functional photosystem II (PSII) reaction centers. The diatom C. simplex at 4°C showed the strongest capacity to resume photosynthesis and active growth during 7 weeks of darkness. In all species, the maintenance of photosynthetic fitness during darkness was clearly temperature dependent as shown by the stronger decline of photosynthetic fitness at 7°C compared to 4°C. Although we lack direct evidence for this, we suggest that temperature-enhanced respiration rates cause stronger depletion of energy reserves that subsequently interferes with the maintenance of photosynthetic fitness during long darkness. Therefore, the current low temperatures in the coastal Southern Ocean may aid the maintenance of photosynthetic fitness during the austral winter. Further experiments should examine to what extent the species-specific differences in dark survival are relevant for future temperature scenarios for the coastal Southern Ocean.
Keywords:algae  Antarctica  Chaetoceros simplex  climate change  Geminigera cryophila  light  photoacclimation  photosynthesis Phaeocystis antarctica
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号