首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of RuBisCO and CO2 concentration on cyanobacterial growth and carbon isotope fractionation
Authors:Amanda K Garcia  Mateusz K?dzior  Arnaud Taton  Meng Li  Jodi N Young  Betül Kaçar
Institution:1. Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, USA;2. Division of Biological Sciences, University of California San Diego, La Jolla, California, USA;3. School of Oceanography, University of Washington, Seattle, Washington, USA
Abstract:Carbon isotope biosignatures preserved in the Precambrian geologic record are primarily interpreted to reflect ancient cyanobacterial carbon fixation catalyzed by Form I RuBisCO enzymes. The average range of isotopic biosignatures generally follows that produced by extant cyanobacteria. However, this observation is difficult to reconcile with several environmental (e.g., temperature, pH, and CO2 concentrations), molecular, and physiological factors that likely would have differed during the Precambrian and can produce fractionation variability in contemporary organisms that meets or exceeds that observed in the geologic record. To test a specific range of genetic and environmental factors that may impact ancient carbon isotope biosignatures, we engineered a mutant strain of the model cyanobacterium Synechococcus elongatus PCC 7942 that overexpresses RuBisCO across varying atmospheric CO2 concentrations. We hypothesized that changes in RuBisCO expression would impact the net rates of intracellular CO2 fixation versus CO2 supply, and thus whole-cell carbon isotope discrimination. In particular, we investigated the impacts of RuBisCO overexpression under changing CO2 concentrations on both carbon isotope biosignatures and cyanobacterial physiology, including cell growth and oxygen evolution rates. We found that an increased pool of active RuBisCO does not significantly affect the 13C/12C isotopic discrimination (εp) at all tested CO2 concentrations, yielding εp of ≈ 23‰ for both wild-type and mutant strains at elevated CO2. We therefore suggest that expected variation in cyanobacterial RuBisCO expression patterns should not confound carbon isotope biosignature interpretation. A deeper understanding of environmental, evolutionary, and intracellular factors that impact cyanobacterial physiology and isotope discrimination is crucial for reconciling microbially driven carbon biosignatures with those preserved in the geologic record.
Keywords:biosignatures  carbon fixation  carbon isotope fractionation  cyanobacteria  RuBisCO
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号