首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ouabain decreases sarco(endo)plasmic reticulum calcium ATPase activity in rat hearts by a process involving protein oxidation
Authors:Kennedy David J  Vetteth Sandeep  Xie Miaorong  Periyasamy Sankaridrug M  Xie Zijian  Han Chi  Basrur Venkatesha  Mutgi Krishna  Fedorov Vladimir  Malhotra Deepak  Shapiro Joseph I
Institution:Dept. of Medicine, Medical University of Ohio, Toledo, Ohio 43614-5089, USA.
Abstract:The effect of cardiac glycosides to increase cardiac inotropy by altering Ca(2+) cycling is well known but still poorly understood. The studies described in this report focus on defining the effects of ouabain signaling on sarcoplasmic reticulum Ca(2+)-ATPase function. Rat cardiac myocytes treated with 50 microM ouabain demonstrated substantial increases in systolic and diastolic Ca(2+) concentrations. The recovery time constant for the Ca(2+) transient, tau(Ca(2+)), was significantly prolonged by ouabain. Exposure to 10 microM H(2)O(2), which causes an increase in intracellular reactive oxygen species similar to that of 50 microM ouabain, caused a similar increase in tau(Ca(2+)). Concurrent exposure to 10 mM N-acetylcysteine or an aqueous extract from green tea (50 mg/ml) both prevented the increases in tau(Ca(2+)) as well as the changes in systolic or diastolic Ca(2+) concentrations. We also observed that 50 microM ouabain induced increases in developed pressure in addition to diastolic dysfunction in the isolated perfused rat heart. Coadministration of ouabain with N-acetylcysteine prevented these increases. Analysis of sarcoplasmic reticulum Ca(2+)-ATPase protein revealed increases in both the oxidation and nitrotyrosine content in the ouabain-treated hearts. Liquid chromatography-mass spectrometric analysis confirmed that the sarcoplasmic reticulum Ca(2+)-ATPase protein from ouabain-treated hearts had modifications consistent with oxidative and nitrosative stress. These data suggest that ouabain induces oxidative changes of the sarcoplasmic reticulum Ca(2+)-ATPase structure and function that may, in turn, produce some of the associated changes in Ca(2+) cycling and physiological function.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号