首页 | 本学科首页   官方微博 | 高级检索  
     


Functional defects in six ryanodine receptor isoform-1 (RyR1) mutations associated with malignant hyperthermia and their impact on skeletal excitation-contraction coupling
Authors:Yang Tianzhong  Ta Tram Anh  Pessah Isaac N  Allen Paul D
Affiliation:Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. tyang@zeus.bwh.harvard.edu
Abstract:Malignant hyperthermia (MH) is a potentially fatal pharmacogenetic disorder of skeletal muscle that segregates with >60 mutations within the MHS-1 locus on chromosome 19 coding for ryanodine receptor type 1 (RyR1). Although some MHRyR1s have been shown to enhance sensitivity to caffeine and halothane when expressed in non-muscle cells, their influence on EC coupling can only be studied in skeletal myotubes. We therefore expressed WTRyR1, six of the most common human MHRyR1s (R163C, G341R, R614C, R2163C, V2168M, and R2458H), and a newly identified C-terminal mutation (T4826I) in dyspedic myotubes to study their functional defects and how they influence EC coupling. Myotubes expressing any MHRyR1 were significantly more sensitive to stimulation by caffeine and 4-CmC than those expressing WTRyR1. The hypersensitivity of MH myotubes extended to K+ depolarization. MH myotubes responded to direct channel activators with maximum Ca2+ amplitudes consistently smaller than WT myotubes, whereas the amplitude of their responses to depolarization were consistently larger than WT myotubes. The magnitudes of responses attainable from myotubes expressing MHRyR1s are therefore related to the nature of the stimulus rather than size of the Ca2+ store. The functional changes of MHRyR1s were directly analyzed using [3H]ryanodine binding analysis of isolated myotube membranes. Although none of the MHRyR1s examined significantly altered EC50 for Ca2+ activation, many failed to be completely inhibited by a low Ca2+ (
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号