首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Red and white muscle activity and kinematics of the escape response of the bluegill sunfish during swimming
Authors:B C Jayne  G V Lauder
Institution:(1) Department of Biological Sciences, University of Cincinnati, 45221-0006 Cincinnati, OH, USA;(2) Department of Ecology and Evolutionary Biology, University of California, 92717 Irvine, CA, USA
Abstract:Summary We quantified midline kinematics with synchronized electromyograms (emgs) from the red and white muscles on both sides of bluegill sunfish (Lepomis macrochirus) during escape behaviors which were elicited from fish both at a standstill and during steady speed swimming. Analyses of variance determined whether or not kinematic and emg variables differed significantly between muscle fiber types, among longitudinal positions, and between swimming versus standstill trials.At a given longitudinal location, both the red and white muscle were usually activated synchronously during both stages of the escape behavior. Stage 1 emg onsets were synchronous; however, the mean durations of stage 1 emgs showed a significant increase posteriorly from about 11 to 15 ms. Stage 2 emgs had significant posterior propagation, but the duration of the stage 2 emgs was constant (17 ms). Posterior emgs from both stages occurred during lengthening of the contractile tissue (as indicated by lateral bending). Steady swimming activity was confined to red muscle bursts which were propagated posteriorly and had significant posterior decrease in duration from about 50% to 37% of a cycle. Fish performed escape responses during all phases of the steady swimming motor pattern. All kinematic events were propagated posteriorly. Furthermore, no distinct kinematic event corresponded to the time intervals of the stage 1 and 2 emgs. The rate of propagation of kinematic events was always slower than that of the muscle activity. The phase relationship between lateral displacement and lateral bending also changed along the length of the fish. Escape responses performed during swimming averaged smaller amplitudes of stage 2 posterior lateral displacement; however, most other kinematic and emg variables did not vary significantly between these two treatments.Abbreviations A angle of lateral flexion (bending) of midline at a single point in time - A1, A2 change in A from T0 to T1 and from T1 to T2 - AMX maximal lateral flexion concave towards the side of the stage 1 emg - AMXR equals AMX minus A at T0 - AT1, AT2 lateral flexion at T1 and T2 - DUR1, DUR2 durations of stage 1 and stage 2 emgs - emg electromyogram - ON2 onset time of stage 2 emg - RELDUR relative duration of steady swimming emg - T0, T1, T2 times of stage 1 emg onset, latest stage 1 emg offset and latest stage 2 emg offset standardized such that T0 = 0 - TAMX, TAMN, TYMX times of maximal lateral flexion, no lateral flexion and maximum lateral displacement - Y1, Y2 amounts of lateral displacement from T0 to T1 and from T1 to T2 - YMXR relative amount of lateral displacement from T0 to TYMX
Keywords:Muscle  Locomotion  Fish  Electromyography  Kinematics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号