首页 | 本学科首页   官方微博 | 高级检索  
     


An inverse algorithm for a mathematical model of an avian urine concentrating mechanism
Authors:Marcano-Velázquez M  Layton Harold E
Affiliation:(1) Department of Mathematics, University of Puerto Rico, P.O. Box 23355, Río Piedras, Puerto Rico, 00931-3355, USA;(2) Department of Mathematics, Duke University, Durham, NC 27708-0320, USA
Abstract:A nonlinear optimization technique, in conjunction with a single-nephron, single-solute mathematical model of the quail urine concentrating mechanism, was used to estimate parameter sets that optimize a measure of concentrating mechanism efficiency, viz., the ratio of the free-water absorption rate to the total NaCl active transport rate. The optimization algorithm, which is independent of the numerical method used to solve the model equations, runs in a few minutes on a 1000 MHz desktop computer. The parameters varied were: tubular permeabilities to water and solute; maximum active solute transport rates of the ascending limb of Henle and the collecting duct (CD); length of the prebend enlargement (PBE) of the descending limb; fractional solute delivery to the CD; solute concentration of tubular fluid entering the CD at the cortico-medullary boundary; and rate of exponential CD population decrease along the medullary cone. Using a base-case parameter set and parameter bounds suggested by physiologic experiments, the optimization algorithm identified a maximum-efficiency set of parameter values that increased efficiency by 40% above base-case efficiency; a minimum-efficiency set reduced efficiency by about 41%. When maximum-efficiency parameter values were computed as medullary length varied over the physiologic range, the PBE was found to make up 88% of a short medullary cone but only 8% of a long medullary cone.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号