首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Developmental and environmental regulation of tissue- and cell-specific expression for a pea protein farnesyltransferase gene in transgenic plants
Authors:Dafeng Zhou  Daqi Qian  Carole L Cramer  Zhenbiao Yang
Institution:Department of Plant Pathology, Physiology and Weed Science and Fralin Biotechnology Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Plant Biotechnology Center and Department of Plant Biology, Ohio State University, Columbus, OH 43210, USA
Abstract:Farnesylation mediates membrane targeting and in vivo activities of several key regulatory proteins such as Ras and Ras-related GTPases and protein kinases in yeast and mammals, and is implicated in cell cycle control and abscisic acid (ABA) signaling in plants. In this study, the developmental expression of a pea protein farnesyl-transferase (FTase) gene was examined using transgenic expression of the β-glucuronidase (GUS) gene fused to a 3.2 kb 5′ upstream sequence of the gene encoding the pea FTase β subunit. Coordinate expression of the GUS transgene and endogenous tobacco FTase β subunit gene in tobacco cell lines suggests that the 3.2 kb region contains the key FTase promoter elements. In transgenic tobacco plants, GUS expression is most prominent in meristematic tissues such as root tips, lateral root primordia and the shoot apex, supporting a role for FTase in the control of the cell cycle in plants. GUS activity was also detected in mature embryos and imbibed embryos, in accordance with a role for FTase in ABA signaling that modulates seed dormancy and germination. In addition, GUS activity was detected in regions that border two organs, e.g. junctions between stems and leaf petioles, cotyledons and hypocotyls, roots and hypocotyls, and primary and secondary roots. GUS is expressed in phloem complexes that are adjacent to actively growing tissues such as young leaves, roots of light-grown seedlings, and hypocotyls of dark-grown seedlings. Both light and sugar (e.g. sucrose) treatments repressed GUS expression in dark-grown seedlings. These expression patterns suggest a potential involvement of FTase in the regulation of nutrient allocation into actively growing tissues.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号