PDGF-C controls proliferation and is down-regulated by retinoic acid in mouse embryonic palatal mesenchymal cells |
| |
Authors: | Han Jing Xiao Ying Lin Jiuxiang Li Yong |
| |
Affiliation: | Department of Food Science and Nutrition, School of Public Health, Peking University, Beijing 100083, China. |
| |
Abstract: | BACKGROUND: Platelet-derived growth factor C (PDGF-C) was recently identified as a member of the PDGF ligand family. Some observation suggests that PDGF-C could play an important role in palatogenesis highlighted by the Pdgfc(-/-) mouse with cleft palate, which led us to examine the mechanism of PDGF-C signaling in palatogenesis. It is well known that retinoic acid (RA) is a teratogen that can effectively induce cleft palate in the mouse. Due to the critical roles of PDGF-C and RA in cleft palate, the link between cleft palate induced by RA and loss of PDGF-C was investigated. METHODS: Retarded mesenchymal proliferation is an important cause for cleft palate. To clarify the mechanism of PDGF-C in palatogenesis, we evaluated the effects of PDGF-C and anti-PDGF-C neutralizing antibody on proliferation activity in mouse embryonic palatal mesenchymal (MEPM) cells. RESULTS: Briefly, our results show PDGF-C promotes proliferation, anti-PDGF-C antibody inhibits it in MEPM cells, and RA downregulates the PDGF-C expression both at the mRNA and protein levels. CONCLUSIONS: These demonstrate that PDGF-C is a potent mitogen for MEPM cells, implying that inactivated PDGF-C by gene-targeting or reduced PDGF-C by RA may both cause inhibition of proliferation in palatal shelves, which might account for the pathogenesis of cleft palate in Pdgfc(-/-) mouse or RA-treated mouse. In conclusion, our results suggest that PDGF-C signaling is a new mechanism of cleft palate induced by RA. |
| |
Keywords: | PDGF‐C all‐trans retinoic acid cleft palate proliferation mouse embryonic palatal mesenchymal cells |
本文献已被 PubMed 等数据库收录! |
|