首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Aminoglycoside induced nephrotoxicity: molecular modeling studies of calreticulin-gentamicin complex
Authors:Gururao Hariprasad  Manoj Kumar  Komal Rani  Punit Kaur  Alagiri Srinivasan
Institution:Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
Abstract:Gentamicin is a member of aminoglycoside group of broad spectrum antibiotics. It impairs protein synthesis by binding to A site of the 30S subunit of bacterial ribosomes. One of the main side effects of this drug is nephrotoxicity. The drug is known to bind to calreticulin, a chaperone essential for the folding of glycosylated proteins. We provide a detailed structural insight of the calreticulin-gentamicin complex by molecular modeling and the binding of the drug in the presence of explicit solvent was analyzed by molecular dynamics simulation. The gentamicin molecule binds to the lectin site of the calreticulin and lies in the concave channel formed by the long beta sheets. It makes interactions with residues Tyr109, Asp125, Asp135, Asp317 and Trp319 which are crucial for the chaperone function of the calreticulin. The superimposing of the modeled complex with the only available crystal structure complex of calreticulin with a tetrasaccharide (Glc(1)Man(3)) shows interesting features. First, the rings of the gentamicin occupy the positions of glucose and the first two mannose sugars of the tetrasaccharide molecule. Second, the oxygen atoms of the glycosidic linkage of these two ligands have a positional deviation of 1.3 ?. The predicted binding constant of 16.9 μM is in accordance with the previous kinetic study experiments. The details therefore, strongly implicate gentamicin as a competitive inhibitor of sugar binding with calreticulin.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号