首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Auxin-dependent breakdown of xyloglucan in cotyledons of germinating nasturtium seeds
Authors:Andreas Hensel  David A Brummell  Rami Hanna  Gordon Maclachlan
Institution:(1) Department of Biology, McGill University, 1205 Avenue Dr. Penfield, H3A 1B1 Montréal, Québec, Canada;(2) Present address: Genetic Engineering of Proteins, National Research Council, 100 Sussex Drive, K1A OR6 Ottawa, Ont., Canada
Abstract:Rapid mobilisation of storage products, including xyloglucan, in cotyledons of germinating nasturtium (Tropaeolum majus L.) normally starts about 7–8 d after imbibition and growth of the seedling at 20–25° C. Levels of activity of endo-1,4-beta-glucanase (EC 3.2.1.4) in cotyledons, as assayed viscometrically with xyloglucan as substrate, varied in parallel with the rate of breakdown of xyloglucan. When cotyledons were excised from the seedling axis and incubated on moist filter paper at any point before 7 d, the catabolic reactions which normally occurred in the intact seedling were suspended. If, however, cotyledons excised at 8 d were incubated in 10–6 M 2,4-dichlorophenoxyacetic acid, a rise in endo-1,4-beta-glucanase (xyloglucanase) activity was observed and a sharp decrease in fresh and dry weight as well as xyloglucan levels ensued at rates comparable to those observed in cotyledons attached to the seedling. Neither gibberellin nor kinetin treatments promoted xyloglucan breakdown or enhanced xyloglucanase activity. Addition of auxin to excised cotyledons before 7 d did not evoke premature breakdown, indicating that the tissue became receptive to auxin only at this time. The triggering process took place in darkness and was unaffected by various light-dark cycles. It is concluded that the sudden degradation of xyloglucan which occurs in nasturtium seeds about a week after germination begins is the result of enhanced activity of a depolymerizing xyloglucanase, this activity being evoked by auxin originating in the emerging seedling axis.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,3-D 2,3-dichlorophenoxyacetic acid - GA3 gibberellic acid - kDa kilodalton The authors are pleased to acknowledge the technical assistance of Alexander Marcus and valuable discussions with Dr. Vladimir Farkas. This study was supported by a scholarship to A.H. from the Deutsche Forschungsgemeinschaft (FRG) and a grant to G.M. from the Natural Sciences and Engineering Research Council of Canada.
Keywords:Auxin (2  4-D)  xyloglucan breakdown  Cotyledon  1  4-beta-d-Glucanase (endo-)" target="_blank">gif" alt="beta" align="MIDDLE" BORDER="0">-d-Glucanase (endo-)  Germination (seed)  Seed germination  Tropaeolum  Xyloglucan
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号