首页 | 本学科首页   官方微博 | 高级检索  
     


Calorimetric and Fourier transform infrared spectroscopic studies on the interaction of glycophorin with phosphatidylserine/dipalmitoylphosphatidylcholine-d62 mixtures
Authors:R Mendelsohn  J W Brauner  L Faines  H H Mantsch  R A Dluhy
Abstract:Glycophorin has been isolated in pure form from human erythrocyte membranes and reconstituted into lipid vesicles composed of binary mixtures of bovine brain phosphatidylserine (PS) and acyl-chain perdeuterated dipalmitoylphosphatidylcholine (DPPC-d62). The effect of protein on lipid melting behavior and order has been monitored with differential scanning calorimetry and Fourier transform infrared spectroscopy (FT-IR). The phase diagram for PS/DPPC-d62 is consistent with that previously reported for PS/DPPC (Stewart et al. (1979) Biochim. Biophys. Acta 556, 1-16) and indicates that acyl chain perdeuteration does not greatly alter the lipid mixing characteristics. The use of deuterated lipid allows the examination of lipid order by FT-IR of each lipid component in the binary mixtures as well as in the ternary (lipid/lipid/protein) systems. Addition of glycophorin to a 30:70 PS/DPPC-d62 binary lipid mixture results in a preferential glycophorin/PS interaction leading to bulk lipid enriched in DPPC-d62. This is revealed in two ways: first, through cooperative calorimetric transitions increased in temperature from the binary lipid system and second, through FT-IR melting curves of the DPPC-d62 component which shows transitions increased in both onset and completion temperatures in the presence of protein. In addition, non-cooperative melting events are observed at temperatures below the onset of phase separation. The FT-IR data are used to assign these non-cooperative events to the melting of the PS component. For the 50:50 lipid mixture with protein, two transitions are observed in the DSC experiments. The IR results indicate that both lipid components are involved with the lower temperature event.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号