Fluctuations of transfer RNAs between classical and hybrid states |
| |
Authors: | Kim Harold D Puglisi Joseph D Chu Steven |
| |
Affiliation: | Department of Physics, Stanford University, Stanford, California 94305, USA. |
| |
Abstract: | Adjacent transfer RNAs (tRNAs) in the A- and P-sites of the ribosome are in dynamic equilibrium between two different conformations called classical and hybrid states before translocation. Here, we have used single-molecule fluorescence resonance energy transfer to study the effect of Mg(2+) on tRNA dynamics with and without an acetyl group on the A-site tRNA. When the A-site tRNA is not acetylated, tRNA dynamics do not depend on [Mg(2+)], indicating that the relative positions of the substrates for peptide-bond formation are not affected by Mg(2+). In sharp contrast, when the A-site tRNA is acetylated, Mg(2+) lengthens the lifetime of the classical state but does not change the lifetime of the hybrid state. Based on these findings, the classical state resembles a state with direct stabilization of tertiary structure by Mg(2+) ions whereas the hybrid state resembles a state with little Mg(2+)-assisted stabilization. The antibiotic viomycin, a translocation inhibitor, suppresses tRNA dynamics, suggesting that the enhanced fluctuations of tRNAs after peptide-bond formation drive spontaneous attempts at translocation by the ribosome. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|