Postnatal glucocorticoids induce alpha-ENaC formation and regulate glucocorticoid receptors in the preterm rabbit lung |
| |
Authors: | Mustafa Shamimunisa B DiGeronimo Robert J Petershack Jean A Alcorn Joseph L Seidner Steven R |
| |
Affiliation: | Department of Pediatrics/Division of Neonatology, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA. mustafa@uthscsa.edu |
| |
Abstract: | At birth, lung fluid clearance is coupled to Na+ transport through epithelial Na+ channels (ENaC) in the distal lung epithelium. We evaluated the effect of postnatal glucocorticoids (GC) on lung alpha-ENaC expression in preterm 29-day gestational age (GA) fetal rabbits. Postnatal treatment of 29-day GA fetuses with 0.5 mg/kg of dexamethasone (Dex) iv resulted in a 2- and 22-fold increase in lung alpha-ENaC mRNA expression compared with saline-treated fetuses after 8 and 16 h, respectively. Lung alpha-ENaC protein levels in Dex-treated fetuses were also elevated compared with saline-treated counterparts. The extravascular lung water (EVLW)/dry lung tissue weight ratios of 29-day GA fetuses treated with either saline or Dex decreased over 24 h compared with that observed at birth; however, at 24 h, the EVLW/dry lung tissue weight ratios of saline- and Dex-treated fetuses were similar. Dex-induced alpha-ENaC mRNA and protein levels were attenuated by glucocorticoid receptor (GCR) antagonist RU-486 in fetal distal lung epithelial cells isolated from 29-day GA fetuses, indicating that GC-dependent augmentation of lung alpha-ENaC requires the presence of functional GCR. Lung GCR mRNA expression and protein levels were elevated in 29-day GA fetuses compared with fetuses at earlier GA. Exposure of 29-day GA fetuses to Dex for 16 h caused a 2.1-fold increase in lung GCR mRNA expression, but GCR protein levels were decreased in Dex-treated fetuses after 24 h. We conclude that postnatal treatment of preterm 29-day GA fetal rabbits with GC results in an elevation of lung alpha-ENaC accompanied by an autoregulation of pulmonary GCR. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|