首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Understanding the role of GRE3 in the erythritol biosynthesis pathway in Saccharomyces uvarum and its implication in osmoregulation and redox homeostasis
Authors:Sonia Albillos-Arenal  Romain Minebois  Amparo Querol  Eladio Barrio
Institution:1. Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain;2. Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain

Contribution: Data curation (equal), ?Investigation (equal), Writing - review & editing (equal)

Abstract:Erythritol is produced in yeasts via the reduction of erythrose into erythritol by erythrose reductases (ERs). However, the genes codifying for the ERs involved in this reaction have not been described in any Saccharomyces species yet. In our laboratory, we recently showed that, during alcoholic fermentation, erythritol is differentially produced by Saccharomyces cerevisiae and S. uvarum species, the latter being the largest producer. In this study, by using BLAST analysis and phylogenetic approaches the genes GRE3, GCY1, YPR1, ARA1 and YJR096W were identified as putative ERs in Saccharomyces cerevisiae Then, these genes were knocked out in our S. uvarum strain (BMV58) with higher erythritol biosynthesis compared to control S. cerevisiae wine strain, to evaluate their impact on erythritol synthesis and global metabolism. Among the mutants, the single deletion of GRE3 markedly impacts erythritol production, although ΔYPR1ΔGCY1ΔGRE3 was the combination that most decreased erythritol synthesis. Consistent with the increased production of fermentative by-products involved in redox balance in the Saccharomyces uvarum strain BMV58, erythritol synthesis increases at higher sugar concentrations, hinting it might be a response to osmotic stress. However, the expression of GRE3 in the S. uvarum strain was found to peak just before the start of the stationary phase, being consistent with the observation that erythritol increases at the start of the stationary phase, when there is low sugar in the medium and nitrogen sources are depleted. This suggests that GRE3 plays its primary function to help the yeast cells to maintain the redox balance during the last phases of fermentation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号