首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effect of local skin cooling before a sustained,submaximal isometric contraction on fatigue and isometric quadriceps femoris performance: A randomized controlled trial
Institution:1. Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland;2. University College Physiotherapy, Thim van der Laan, Landquart, Switzerland;3. Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium;4. Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
Abstract:The central- and peripheral mechanisms by which heat strain limits physical performance are not fully elucidated. Nevertheless, pre-cooling is often used in an attempt to improve subsequent performance. This study compared the effects of pre-cooling vs. a pre-thermoneutral application on central- and peripheral fatigue during 60% of isometric maximum voluntary contraction (MVC) of the right quadriceps femoris muscle. Furthermore, the effects between a pre-cooling and a pre-thermoneutral application on isometric MVC of the right quadriceps femoris muscle and subjective ratings of perceived exertion (RPE) were investigated. In this randomized controlled trial, 18 healthy adults voluntarily participated. The participants received either a cold (experimental) application (+8 °C) or a thermoneutral (control) application (+32 °C) for 20 min on their right thigh (one cuff). After the application, central (fractal dimension – FD) and peripheral (muscle fiber conduction velocity – CV) fatigue was estimated using sEMG parameters during 60% of isometric MVC. Surface EMG signals were detected from the vastus medialis and lateralis using bidimensional arrays. Immediately after the submaximal contraction, isometric MVC and RPE were assessed. Participants receiving the cold application were able to maintain a 60% isometric MVC significantly longer when compared to the thermoneutral group (mean time: 78 vs. 46 s; p=0.04). The thermoneutral application had no significant impact on central fatigue (p>0.05) compared to the cold application (p=0.03). However, signs of peripheral fatigue were significantly higher in the cold group compared to the thermoneutral group (p=0.008). Pre-cooling had no effect on isometric MVC of the right quadriceps muscle and ratings of perceived exertion. Pre-cooling attenuated central fatigue and led to significantly longer submaximal contraction times compared to the pre-thermoneutral application. These findings support the use of pre-cooling procedures prior to submaximal exercises of the quadriceps muscle compared to pre-thermoneutral applications.
Keywords:Peripheral cooling  Electromyography  Maximum isometric strength  Fatigue
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号