首页 | 本学科首页   官方微博 | 高级检索  
     


Distinct modulated pupil function system for real-time imaging of living cells
Authors:Tomonobu M Watanabe  Yoshikazu Tsukasaki  Hideaki Fujita  Taro Ichimura  Tatsuya Saitoh  Shizuo Akira  Toshio Yanagida
Affiliation:RIKEN Quantitative Biology Center (QBiC), 6-2-3 Furuedai, Suita, Osaka, Japan.
Abstract:Optical microscopy is one of the most contributive tools for cell biology in the past decades. Many microscopic techniques with various functions have been developed to date, i.e., phase contrast microscopy, differential interference contrast (DIC) microscopy, confocal microscopy, two photon microscopy, superresolution microscopy, etc. However, person who is in charge of an experiment has to select one of the several microscopic techniques to achieve an experimental goal, which makes the biological assay time-consuming and expensive. To solve this problem, we have developed a microscopic system with various functions in one instrument based on the optical Fourier transformation with a lens system for detection while focusing on applicability and user-friendliness for biology. The present instrument can arbitrarily modulate the pupil function with a micro mirror array on the Fourier plane of the optical pathway for detection. We named the present instrument DiMPS (Distinct optical Modulated Pupil function System). The DiMPS is compatible with conventional fluorescent probes and illumination equipment, and gives us a Fourier-filtered image, a pseudo-relief image, and a deep focus depth. Furthermore, DiMPS achieved a resolution enhancement (pseudo-superresolution) of 110 nm through the subtraction of two images whose pupil functions are independently modulated. In maximum, the spatial and temporal resolution was improved to 120 nm and 2 ms, respectively. Since the DiMPS is based on relay optics, it can be easily combined with another microscopic instrument such as confocal microscope, and provides a method for multi-color pseudo-superresolution. Thus, the DiMPS shows great promise as a flexible optical microscopy technique in biological research fields.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号