首页 | 本学科首页   官方微博 | 高级检索  
     


The dead-end elimination method,tryptophan rotamers,and fluorescence lifetimes
Authors:Hellings Mario  De Maeyer Marc  Verheyden Stefan  Hao Qiang  Van Damme Els J M  Peumans Willy J  Engelborghs Yves
Affiliation:Laboratory of Biomolecular Dynamics, Catholic University of Leuven, Heverlee, Belgium.
Abstract:The Dead-End Elimination method was used to identify 40 low energy microconformations of 16 tryptophan residues in eight proteins. Single Trp-mutants of these proteins all show a double- or triple-exponential fluorescence decay. For ten of these lifetimes the corresponding rotameric state could be identified by comparing the bimolecular acrylamide quenching constant (k(q)) and the relative solvent exposure of the side chain in that microstate. In the absence of any identifiable quencher, the origin of the lifetime heterogeneity is interpreted in terms of the electron transfer process from the indole C epsilon 3 atom to the carbonyl carbon of the peptide bond. Therefore it is expected that a shorter [C epsilon 3-C[double bond]O] distance leads to a shorter lifetime as observed for these ten rotamers. Applying the same rule to the other 30 lifetimes, a link with their corresponding rotameric state could also be made. In agreement with the theory of Marcus and Sutin, the nonradiative rate constant shows an exponential relationship with the [C epsilon 3-C[double bond]O] distance for the 40 datapoints.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号