Abstract: | Docking of the nitrogenase component proteins, the iron protein (FeP) and the molybdenum-iron protein (MoFeP), is required for MgATP hydrolysis, electron transfer between the component proteins, and substrate reductions catalyzed by nitrogenase. The present work examines the function of 3 charged amino acids, Arg 140, Glu 141, and Lys 143, of the Azotobacter vinelandii FeP in nitrogenase component protein docking. The function of these amino acids was probed by changing each to the neutral amino acid glutamine using site-directed mutagenesis. The altered FePs were expressed in A. vinelandii in place of the wild-type FeP. Changing Glu 141 to Gln (E141Q) had no adverse effects on the function of nitrogenase in whole cells, indicating that this charged residue is not essential to nitrogenase function. In contrast, changing Arg 140 or Lys 143 to Gln (R140Q and K143Q) resulted in a significant decrease in nitrogenase activity, suggesting that these charged amino acid residues play an important role in some function of the FeP. The function of each amino acid was deduced by analysis of the properties of the purified R140Q and K143Q FePs. Both altered proteins were found to support reduced substrate reduction rates when coupled to wild-type MoFeP. Detailed analysis revealed that changing these residues to Gln resulted in a dramatic reduction in the affinity of the altered FeP for binding to the MoFeP. This was deduced in FeP titration, NaCl inhibition, and MoFeP protection from Fe2+ chelation experiments.(ABSTRACT TRUNCATED AT 250 WORDS) |