首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways
Authors:Donovan P. Kelly
Affiliation:(1) Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK e-mail: mmza@dna.bio.warwick.ac.uk Tel. +44-1203-572907; Fax +44-1203-523701, GB
Abstract:The free-energy data on which assessments of the autotrophic growth efficiencies of chemolithotrophic bacteria are commonly based have been reevaluated and new values have been calculated. It has been concluded that many earlier calculations are in error and that many values previously reported in the literature are overestimates of efficiency. A problem posed by the chemolithotrophic sulfur-oxidizing bacteria is the elucidation of the mechanism by which elemental sulfur and the sulfane-sulfur (-S-) of the thionic acids are converted to sulfite. Even after decades of studies on sulfur oxidation by these bacteria, this problem has not been fully resolved although it is widely thought that conversion of sulfur to sulfite is brought about by an oxygenase. The biochemically feasible mechanisms by which sulfur and “sulfane” oxidation to sulfite might occur are reviewed. The possible insight afforded by chemical thermodynamics into the most likely mechanisms for oxidation to sulfate in relation to the efficiency of energy conservation is discussed. Energetic calculations and growth yield data indicate that the energy-yielding oxidation of sulfur and “sulfane” to sulfite, either coupled to energy-conserving electron transport or catalyzed by an oxygenase, could explain divergent growth yields among different sulfur-chemolithotrophs. Received: 30 October 1998 / Accepted: 25 January 1999
Keywords:Chemolithotrophic sulfur oxidation  Sulfur oxygenase  Energy conservation  Thermodynamics  Growth yields  Thiobacillus  Archaea
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号