首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction of carboxypeptidase A with carbamate and carbonate esters
Authors:S W King  V R Lum  T H Fife
Abstract:The carbamate ester N-(phenoxycarbonyl)-L-phenylalanine binds well to carboxypeptidase A in the manner of peptide substrates. The ester exhibits linear competitive inhibition toward carboxypeptidase A catalyzed hydrolysis of the amide hippuryl-L-phenylalanine (Ki = 1.0 X 10(-3) M at pH 7.5) and linear noncompetitive inhibition toward hydrolysis of the specific ester substrate O-hippuryl-L-beta-phenyllactate (Ki = 1.4 X 10(-3) M at pH 7.5). Linear inhibition shows that only one molecule of inhibitor is bound per active site at pH 7.5. The hydrolysis of the carbamate ester is not affected by the presence of 10(-8)-10(-9) M enzyme (the concentrations employed in inhibition experiments), but at an enzyme concentration of 3 X 10(-6) M catalysis can be detected. The value of kcat at 30 degrees C, mu = 0.5 M, and pH 7.45 is 0.25 s-1, and Km is 1.5 X 10(-3) M. The near identity of Km and Ki shows that Km is a dissociation constant. Substrate inhibition can be detected at pH less than 7 but not at pH values above 7, which suggests that a conformational change is occurring near that pH. The analogous carbonate ester O-(phenoxycarbonyl)-L-beta-phenyllactic acid is also a substrate for the enzyme. The Km is pH independent from pH 6.5 to 9 and has the value of 7.6 X 10(-5) M in that pH region. The rate constant kcat is pH independent from pH 8 to 10 at 30 degrees C (mu = 0.5 M) with a limiting value of 1.60 s-1. Modification of the carboxyl group of glutamic acid-270 to the methoxyamide strongly inhibits the hydrolysis of O-(phenoxycarbonyl)-L-beta-phenyllactic acid. Binding of beta-phenyllactate esters and phenylalanine amides must occur in different subsites, but the ratios of kcat and kcat/Km for the structural change from hippuryl to phenoxy in each series are closely similar, which suggests that the rate-determining steps are mechanistically similar.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号