The lipid requirement of the (Ca2+ + Mg2+)-ATPase in the human erythrocyte membrane, as studied by various highly purified phospholipases. |
| |
Authors: | B Roelofsen H J Schatzmann |
| |
Abstract: | 1. When complete hydrolysis of glycerophosphlipids and sphingomyelin in the outer membrane leaflet is brought about by treatment of intact red blood cells with phospholipase A2 and sphingomyelinase C, the (Ca2+ + Mg2+)-ATPase activity is not affected. 2. Complete hydrolysis of sphingomyelin, by treatment of leaky ghosts with spingomyelinase C, does not lead to an inactivation of the (Ca2+ + Mg2+)-ATPase. 3. Treatment of ghosts with phospholipase A2 (from either procine pancreas of Naja naja venom), under conditions causing an essentially complete hydrolysis of the total glycerophospholipid fraction of the membrane, results in inactivation of the (Ca2+ + Mg2+)-ATPase by some 80--85%. The residual activity is lost when the produced lyso-compounds (and fatty acids) are removed by subsequent treatment of the ghosts with bovine serum albumin. 4. The degree of inactivation of the (Ca2+ + Mg2+)-ATPase, caused by treatment of ghosts with phospholipase C, is directly proportional to the percentage by which the glycerophospholipid fraction in the inner membrane layer is degraded. 5. After essentially complete inactivation of the (Ca2+ + Mg2+)-ATPase by treatment of ghosts with phospholipase C from Bacillus cereus, the enzyme is reactivated by the addition of any of the glycerophospholipids, phosphatidylserine, phosphatidylcholine, phosphatidylethanolamine or lysophosphatidylcholine, but not by addition of sphingomyeline, free fatty acids or the detergent Triton X-100. 6. It is concluded that only the glycerophospholipids in the human erythrocyte membrane are involved in the maintenance of the (Ca2+ + Mg2+)-ATPase activity, and in particular that fraction of these phospholipids located in the inner half of the membrane. |
| |
Keywords: | |
|
|