首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Duplication of 7p12.1-p13, including GRB10 and IGFBP1, in a mother and daughter with features of Silver-Russell syndrome
Authors:CA Joyce  A Sharp  JM Walker  H Bullman  IK Temple
Institution:Wessex Regional Genetics Laboratory, Salisbury Health Care Trust, Wilts, UK. wessex.genetics@dial.pipex.com
Abstract:Silver-Russell syndrome (SRS) has been associated with maternal uniparental disomy (UPD) of chromosome 7 in approximately 10% of cases, suggesting that at least one imprinted gene on chromosome 7 is involved in the pathogenesis of the disease. We report a proximal 7p interstitial inverted duplication in a mother and daughter both of whom have features of SRS, including marked short stature, low birth weight, facial asymmetry and 5th finger clinodactyly. Fluorescence in situ hybridisation (FISH) with YAC probes enabled delineation of the duplicated region to 7p12.1-p13. This region of proximal chromosome 7 is known to be homologous to an imprinted region in the mouse chromosome 11 and contains the growth-related genes GRB10 (growth factor receptor-bound protein 10), EGFR (epidermal growth factor receptor) and IGFBP1 (insulin-like growth factor binding protein 1), all of which have been suggested as candidate genes for SRS. Molecular analysis showed that the duplication in both mother and daughter spanned a distance of approximately 10 cM and included GRB10 and IGFBP1 but not EGFR. The de novo duplication in the proband's mother was shown to be of paternal origin. In order to test the hypothesis that sub-microscopic duplications of 7p, whether maternal or paternal in origin, are responsible for at least some cases of SRS, we screened a further eight patients referred to our laboratory for SRS. None were found to have duplications of either GRB10 or IGFBP1. The hypothesis that sub-microscopic duplications including GRB10 and IGFBP1 is a cause of SRS remains a possibility and warrants further investigation. Importantly, in contrast to current thinking, our results suggest that imprinted genes may not underlie the SRS phenotype, and we propose an alternative hypothesis to explain the occurrence of maternal UPD 7 seen in some cases of SRS.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号