首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Quantification of plant surface metabolites by matrix‐assisted laser desorption–ionization mass spectrometry imaging: glucosinolates on Arabidopsis thaliana leaves
Authors:Rohit Shroff  Katharina Schramm  Verena Jeschke  Peter Nemes  Akos Vertes  Jonathan Gershenzon  Ale? Svato?
Institution:1. Research Group on Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany;2. Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany;3. Department of Chemistry, W.M. Keck Institute for Proteomics Technology and Applications, George Washington University, Washington, DC, USA
Abstract:The localization of metabolites on plant surfaces has been problematic because of the limitations of current methodologies. Attempts to localize glucosinolates, the sulfur‐rich defense compounds of the order Brassicales, on leaf surfaces have given many contradictory results depending on the method employed. Here we developed a matrix‐assisted laser desorption–ionization (MALDI) mass spectrometry protocol to detect surface glucosinolates on Arabidopsis thaliana leaves by applying the MALDI matrix through sublimation. Quantification was accomplished by spotting glucosinolate standards directly on the leaf surface. The A. thaliana leaf surface was found to contain approximately 15 nmol of total glucosinolate per leaf with about 50 pmol mm?2 on abaxial (bottom) surfaces and 15–30 times less on adaxial (top) surfaces. Of the major compounds detected, 4‐methylsulfinylbutylglucosinolate, indol‐3‐ylmethylglucosinolate, and 8‐methylsulfinyloctylglucosinolate were also major components of the leaf interior, but the second most abundant glucosinolate on the surface, 4‐methylthiobutylglucosinolate, was only a trace component of the interior. Distribution on the surface was relatively uniform in contrast to the interior, where glucosinolates were distributed more abundantly in the midrib and periphery than the rest of the leaf. These results were confirmed by two other mass spectrometry‐based techniques, laser ablation electrospray ionization and liquid extraction surface analysis. The concentrations of glucosinolates on A. thaliana leaf surfaces were found to be sufficient to attract the specialist feeding lepidopterans Plutella xylostella and Pieris rapae for oviposition. The methods employed here should be easily applied to other plant species and metabolites.
Keywords:MALDI imaging  leaf surface     Arabidopsis thaliana     insect oviposition     Plutella xylostella        Pieris rapae     liquid extraction surface analysis  abaxial surface  adaxial surface  technical advance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号