首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nuclear architecture of human pachytene spermatocytes: quantitative analysis of associations between nucleolar and XY bivalents
Authors:Soledad Berrios  Raúl Fernández-Donoso
Institution:(1) Department of Cell Biology and Genetics, Faculty of Medicine, University of Chile, P.O. Box 70061, Santiago 7, Chile
Abstract:Summary Nucleolar association and heterochromatin coalescence have both been invoked as mechanisms involved in the origin of chromosomal associations between nucleolar bivalents themselves, as well as between these bivalents and the XY pair, during meiotic prophase in human spermatocytes. However, these mechanisms do not satisfactorily explain how associating bivalents meet each other within the nuclear space. To elucidate this problem, we have characterized different types of nucleolar-nucleolar and nucleolar-XY bivalent associations, and their frequencies, in light and electron microscope serial sections of spermatocyte nuclei. In the pachytene nucleus, nucleolar bivalent associations were found to involve only one nucleolar sphere of RNP granules connected through a fibrillar center to a chromatin mass composed of two, or more, nucleolar-bivalent short arms. Structural relationships between these elements were examined using 3D computer models of various nucleolar associations. XY and nucleolar bivalents were usually located towards the nuclear periphery associated with the inner face of the nuclear envelope. Some nucleolar bivalents, whether single or associated appeared beside or over XY chromatin. When nucleolar-bivalent short arms (BK) were found over nucleolar or over XY chromatin, their telomeres were unattached to the nuclear envelope and the corresponding synaptonemal complexes were not observed. Ninety nucleoli were found in sixty pachytene nuclei. Thirty six percent of these nucleoli were bound to associated BKs and the remaining 64% to single BKs. Over 40% of individual spermatocytes showed at least one cluster of associated BKs and about 20% presented single or multiple BKs associated with the XY pair. The frequencies of random BK associations, over the total or restricted areas of the nuclear envelope, were calculated according to a probabilistic nuclear model. A correspondence was found in comparing the observed frequencies of associated BKs with those calculated on the basis of bouquet formation. Such an analysis strongly suggests that the occurrence of associations between nucleolar bivalents may arise at random within the bouquet. Thus, the architecture of the meiocyte nucleus, particularly the organization of the bouquet, may be the primary mechanism by which nucleolar bivalents meet each other and, consequently, become associated either through common nucleolus formation or by heterochromatin coalescence.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号