首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular cloning of a ubiquitously distributed microtubule-associated protein with Mr 190,000
Authors:H Aizawa  Y Emori  H Murofushi  H Kawasaki  H Sakai  K Suzuki
Affiliation:Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan.
Abstract:A heat-stable microtubule-associated protein (MAP) with apparent molecular weight of 190,000 is a major non-neural MAP which distributes ubiquitously among bovine tissues (termed here MAP-U). Previously we reported that microtubule-binding chymotryptic fragments of MAP-U and tau contain a common assembly-promoting (AP) sequence of 22 amino acid residues (Aizawa, H., Kawasaki, H., Murofushi, H., Kotani, S., Suzuki, K., and Sakai, H. (1989) J. Biol. Chem. 264, 5885-5890). We isolated cDNA clones for MAP-U containing the whole coding sequence. Northern blot analysis revealed that a major species of MAP-U mRNA is 5 kilobases in length and is expressed ubiquitously among bovine tissues. Nucleotide sequence analysis revealed the complete amino acid sequence of MAP-U which consists of 1,072 amino acid residues. Analysis of the deduced amino acid sequence of MAP-U indicated that this molecule is clearly divided into two domains in terms of electrostatic charge distribution: an amino-terminal acidic domain (residues 1-640) and a carboxyl-terminal basic domain (residues 641-1072). The amino-terminal domain of MAP-U shows no significant sequence homology with other known protein sequences including neural MAPs, tau, and MAP-2. The amino-terminal domain of MAP-U contains unique 18 1/2 repeats of 14-amino acid motif which have not been observed in other MAPs. The carboxyl-terminal domain of MAP-U is further divided into three regions: a Pro-rich region (residues 641-880), an AP sequence region (residues 881-1003), and a short hydrophobic tail (residues 1004-1072). The Pro-rich region is mainly composed of five species of amino acid residues, Pro, Ala, Lys, Ser, and Thr. The AP sequence region contains four tandem repeats of AP sequences, and thus, this region is considered to play a leading role in the interaction of MAP-U with microtubules.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号