首页 | 本学科首页   官方微博 | 高级检索  
     


A model of the central and reflex inhibition of inspiration in the cat
Authors:G. W. Bradley  C. von Euler  Irja Marttila  B. Roos
Affiliation:1. Nobel Institute for Neurophysiology, Karolinska Institutet, Stockholm, Sweden
2. the Department of Automatic Control, Royal Institute of Technology, Stockholm, Sweden
Abstract:An attempt is made to summarize the results obtained in previous work from this and other laboratories on the steady state and transient relationships between the mechanical and neural events in breathing and their precise timing in the breathing cycle at different blood chemical demands for ventilation and at different body temperatures, and to fit these results into a functional and realistic model of the bulbo-pontine inspiratory off-switch mechanisms. The experimentally based requirements for the model are briefly described and listed. After a presentation of the model in qualitative terms its functional properties are considered quantitatively and compared with the performance of the real, biological system. This has been achieved by assuming some simple mathematical approximations for the activities of the introduced physiological parameters and their chemical “drive” dependence. The gaps in our present knowledge are pointed out and some key experiments suggested. The proposed model is consistent with the main conclusions reached in previous work from this laboratory that there are three neural submechanisms which are mainly responsible for the effects of increased CO2 on ventilation: 1) a rise in the inspiratory off-switch threshold, 2) an increased rate of rise of the centrally generated inspiratory activity that projects to the off-switch mechanism (and to the spinal respiratory motoneurons), and 3) the vagal volume feed-back. Of these 1) and 2) are mainly responsible for the increase in tidal volume, whereas the vagal volume feed-back is mainly responsible for the increase in respiratory rate. The comparison between the model behaviour and experimental data suggest that the slight CO2 sensitivity of the pulmonary stretch receptors recently reported on, has to be taken into account. The model studies have suggested the increase in respiratory rate with increased temperature may be due either to an increased rate of rise of inspiratory activity or to a decreased off-switch threshold, or both in combination. The mechanism controlling the expiratory durations are briefly discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号