首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Iron detoxification properties of Escherichia coli bacterioferritin. Attenuation of oxyradical chemistry
Authors:Bou-Abdallah Fadi  Lewin Allison C  Le Brun Nick E  Moore Geoffrey R  Chasteen N Dennis
Institution:Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, USA.
Abstract:Bacterioferritin (EcBFR) of Escherichia coli is an iron-mineralizing hemoprotein composed of 24 identical subunits, each containing a dinuclear metal-binding site known as the "ferroxidase center." The chemistry of Fe(II) binding and oxidation and Fe(III) hydrolysis using H(2)O(2) as oxidant was studied by electrode oximetry, pH-stat, UV-visible spectrophotometry, and electron paramagnetic resonance spin trapping experiments. Absorption spectroscopy data demonstrate the oxidation of two Fe(II) per H(2)O(2) at the ferroxidase center, thus avoiding hydroxyl radical production via Fenton chemistry. The oxidation reaction with H(2)O(2) corresponds to Fe(II)(2)-P](Z) + H(2)O(2) --> Fe(III)(2)O-P](Z) + H(2)O, where Fe(II)(2)-P](Z) represents a diferrous ferroxidase center complex of the protein P with net charge Z and Fe(III)(2)O-P](Z) a micro-oxo-bridged diferric ferroxidase complex. The mineralization reaction is given by 2Fe(2+) + H(2)O(2) + 2H(2)O --> 2FeOOH((core)) + 4H(+), where two Fe(II) are again oxidized by one H(2)O(2). Hydrogen peroxide is shown to be an intermediate product of dioxygen reduction when O(2) is used as the oxidant in both the ferroxidation and mineralization reactions. Most of the H(2)O(2) produced from O(2) is rapidly consumed in a subsequent ferroxidase reaction with Fe(II) to produce H(2)O. EPR spin trapping experiments show that the presence of EcBFR greatly attenuates the production of hydroxyl radical during Fe(II) oxidation by H(2)O(2), consistent with the ability of the bacterioferritin to facilitate the pairwise oxidation of Fe(II) by H(2)O(2), thus avoiding odd electron reduction products of oxygen and therefore oxidative damage to the protein and cellular components through oxygen radical chemistry.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号